2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу Пред.  1 ... 3, 4, 5, 6, 7, 8, 9 ... 14  След.
 
 Re: Еще один вариант для кубов
Сообщение02.12.2022, 11:51 


17/06/18
409
Я не знаю заметили Вы или нет, но проблема лишнего квадрата никуда не делась. Равенства должны выглядеть так:
$(x_1x_2b)^3=(b(z-y)^{1/3})^3(b^2(z-y)^2+b^23zy)$ (2.1.1);
$(x_1x_2b)^3=b^2(b(z-y))(b^2(z-y)^2+b^23zy)$ (2.2.1);
Теперь равенства идентичны, и в обоих, в отличие от исходных (2.1) и (2.2), две скобки справа не являются кубами. Только в обоих, справа лишний $b^2$.
Если же мы оставим (2.1) и (2.2) как есть, окажется что получить непримитивную тройку невозможно, а значит и примитивную тоже.
Согласны?

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение02.12.2022, 12:13 
Заслуженный участник
Аватара пользователя


16/07/14
8460
Цюрих
dick в сообщении #1572259 писал(а):
Равенства должны выглядеть так:
$(x_1x_2b)^3=(b(z-y)^{1/3})^3(b^2(z-y)^2+b^23zy)$ (2.1.1);
А вот это непонятно откуда взялось.
Я не знаю, что значит "оставить равенства как есть".
Я понимаю, как получить (2.1):
$(x_1 x_2)^3 = (z - y)((z - y)^2 +3zy)$ - уже было
$(x_1 x_2)^3 \cdot b^3 = (z - y)((z - y)^2 +3zy) \cdot b^3$ - по схеме $p = q \vdash p \cdot r = q \cdot r$, берем $p = (x_1 x_2)^3$, $q = (z - y)((z - y)^2 +3zy)$, $r = b^3$
$(x_1 x_2 b)^3 = (b^3(z - y))((z - y)^2 +3zy)$ - ассоциативность и коммутативность умножения
$(x_1 x_2 b)^3 = (b^3 \sqrt[3]{z - y}^3)((z - y)^2 +3zy)$ - определение $\sqrt[3]\cdot$
$(x_1 x_2 b)^3 = (b \sqrt[3]{z - y})^3 ((z - y)^2 +3zy)$ - опять ассоциативность и коммутативность умножения

Можете ли вы в таком же стиле расписать, откуда взялось (2.1.1)?

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение02.12.2022, 12:48 


17/06/18
409
Все так, но для получения непримитвной тройки, $x,y,z$ должны быть умножены на $b$. Если мы действуем так, то в $(z-y)$ упускаем $b^2$, если же не хотим его упустить, то должны остаться без умножения на $b$ члены второй скобки. Если же , наконец, мы удовлетворяем обе скобки, оказывается что справа лишний $b^2$.

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение02.12.2022, 12:55 
Заслуженный участник
Аватара пользователя


16/07/14
8460
Цюрих
dick в сообщении #1572272 писал(а):
Все так, но для получения непримитвной тройки, $x,y,z$ должны быть умножены на $b$
Напишите формул, каким образом вы при домножении обеих частей равенства на одно и то же число, и перегруппировке сомножителей, получаете неверное равенство?

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение02.12.2022, 13:32 


17/06/18
409
$(x_1x_2)^3=(z-y)((z-y)^2+3zy)$ (1.1)
$(x_1x_2b)^3=b(z-y)((bz-by)^2+3bzby)=b(z-y)(b^2(z-y)^2+b^2(3zy))=b^3(z^3-y^3)$
Но мы знаем, что $(z-y)=x_1^3$, тогда $(bx_1)^3=b^3(z-y)$, а не $b(z-y)$.

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение02.12.2022, 14:07 
Заслуженный участник
Аватара пользователя


16/07/14
8460
Цюрих
Правильно, а почему собственно должно бы быть $(bx_1)^3 = b(z - y)$?

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение02.12.2022, 14:45 


17/06/18
409
Потому что $z$ и $y$, также как $x$, должны быть умножены на $b$.

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение02.12.2022, 15:08 
Заслуженный участник
Аватара пользователя


16/07/14
8460
Цюрих
Напишите формулы. В каком равенстве что на что умножается, что получается $(b x_1)^3 = b(z - y)$.
Напоминаю, текущие равенства, с которыми я согласен (в предположении $x,y,z$ взаимно просты, $x$ не делится на $3$ и я нигде не опечатался):
$x^3 = z^3 - y^3$ (1)
$x = x_1 x_2$
$x_1^3 = z - y$
$x_2^3 = (z - y)^2 + 3zy$
$(x_1 x_2)^3 = (z - y)((z - y)^2 + 3zy)$ (1.1)
$(x_1x_2b)^3=(b(z-y)^{1/3})^3((z-y)^2+3zy)$ (2.1)
$(x_1x_2b)^3=b(z-y)(b^2(z-y)^2+b^23zy)$ (2.2)
$(bx_1)^3 = b^3 (z - y)$

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение02.12.2022, 16:07 


17/06/18
409
Еще раз говорю: для получения непримитивного равенства (1.1) нужно тройку решения $x,y,z$ умножить на $b$.
Имеем : $(x_1x_2)^3=(z-y)((z-y)^2+3zy)$ (1.1); Умножаем на $b$ :
$(x_1x_2b)^3=b(z-y)((bz-by)^2+3bzby)=b(z-y)(b^2(z-y)^2+b^2(3zy))$
Здесь строго соблюдены правила умножения тройки на $b$. В результате $x_1^3=b(z-y)$; $x_2^3=(b^2(z-y)^2+b^2(3zy))$;
Если, как Вы пишете, перетащить $b^2$ из второй скобки в первую, выйдет что во второй скобке $z$ и $y$ не умножаются на $b$ и это надо как то объяснять.
Разумеется это Ваше дело, но я советовал бы не спешить с ответом, незачем спешить. А то кажется переливаем из пустого в порожнее.

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение02.12.2022, 16:28 
Заслуженный участник
Аватара пользователя


16/07/14
8460
Цюрих
dick в сообщении #1572317 писал(а):
В результате $x_1^3=b(z-y)$;
Вот так писать нельзя, вы одной и той же буквой два разных числа обозначаете.
Я, кажется, понял, в чем ваша проблема.
Взяли взаимно простую тройку $x, y, z$. Введем новые переменные: $p = bx$, $q = by$, $r = bz$. Очевидно $p^3 = r^3 - q^3 = (r - q)((r - q)^2 + 3rq)$. И вы хотите ввести тут $p_1$ и $p_2$ аналогично предыдущему, так что $p = p_1 p_2$, $p_1^3 = r - q$, $p_2^3 = (r - q)^2 + 3rq$. Но тогда будет $p_1 = \sqrt[3]{b} \cdot x_1$, а не $p_1 = b x_1$. И $p_1$ даже в общем случае не будет целым, в полном соответствии с тем, что в доказательстве того, что $z - y$ - точный куб, использовалась взаимная простота $y$ и $z$.
Если это непонятно, то напишите формулами, что происходит в последних трех строчках вашего последнего сообщения, только вводя новые буквы для новых чисел.

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение02.12.2022, 19:06 


17/06/18
409
Как я понимаю, в Вашей модели $p,r,g$ имеют общий множитель. Почему же тогда $(r-g)$ это куб?
Я написал формулами все что мог. Никаких новых чисел здесь не потребуется.
Если хотите формул, говорите подробно что нужно.

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение02.12.2022, 19:19 
Заслуженный участник
Аватара пользователя


16/07/14
8460
Цюрих
Мои $p, q, r$ - не-примитивное решение, получающееся домножением примитивного решения $x, y, z$ на $b$.
dick в сообщении #1572344 писал(а):
Почему же тогда $(r-g)$ это куб?
Да ни почему. Не куб это в общем случае.
Впрочем, если непонятно, можете часть про $p, q, r$ игнорировать. Это была моя попытка догадаться, что именно вы неправильно представляете.

dick в сообщении #1572317 писал(а):
В результате $x_1^3=b(z-y)$;
Вот это не доказано. Напоминаю, что определение $x_1$ было $x_1 = \sqrt[3]{z - y}$, а использовать два определения для одной переменной нельзя, после того, как определение дано, все остальные равенства с ней нужно доказывать.
dick в сообщении #1572344 писал(а):
Я написал формулами все что мог
Вот это вас и должно смутить. До того всё было верно (хотя и тривиально). Раз вы что-то не можете записать подробно, то это повод к этому присмотреться очень внимательно.

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение02.12.2022, 22:11 


17/06/18
409
Как же Вы не поймете, что $b(z-y)$ это чистая формальность. Чем бы ни было $(z-y)$, если оно так представлено, то при масштабировании будет умножаться на первую степень коэффициента. Разумеется, никто этого не доказывает, да и в нашем случае ведь все сходится, если бы только $(z-y)$ не было степенью. Но, раз уж мы знаем что это куб, не учитывать это невозможно. Судя по тому, что Вы пишите, Вы верно думаете, что я не знаю в чем дело и просто выкатил Вам проблему, но это не так.. Сама проблема вполне содержательна, и мне конечно хотелось, что бы Вы сами нашли разгадку, но видно не судьба.
Для того что бы непримитивное (1.1) стало возможным без противоречий, требуется, что бы число $(z-y)$ в примитивном (1.1) было одновременно и кубом и основанием этого куба. Таким числом является только единица.

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение03.12.2022, 02:40 
Заслуженный участник
Аватара пользователя


16/07/14
8460
Цюрих
dick в сообщении #1572377 писал(а):
Как же Вы не поймете, что $b(z-y)$ это чистая формальность
Так и не понимаю, что понятие "чистая формальность" не определено.
Математическое доказательство должно быть последовательностью утверждений, каждое из которых четко сформулировано и обосновано.
Иногда допускаются вольности речи вроде "кривая обходит точку" или "вектор изменяется таким-то образом", но за ними всегда стоят четкие формулировки. Понятия "учитывать что это куб" нет.
Если $x_1^3 = z - y$, то $x_1^3 \cdot b = b \cdot (z - y)$ выводится из аксиом целых (например) чисел. Никаких исключений для случая, когда один из сомножителей куб, в аксиомах нет. Сама проблема в том, что вы не можете четко сформулировать свое рассуждение. Вас не смущает, что до какого-то момента у вас нормальное рассуждение "Известно X, из него следует Y. Предположим Z, тогда противоречие, значит не-Z", а вот с какого-то начинаются только рукомахательства, похожие на которые вы не найдете ни в одном учебнике?
Как только вы пишете какое-то строгое рассуждение - в нем можно найти ошибку.
dick в сообщении #1572377 писал(а):
Для того что бы непримитивное (1.1) стало возможным без противоречий, требуется, что бы число $(z-y)$ в примитивном (1.1) было одновременно и кубом и основанием этого куба
Вот это не доказано.
(ну и кстати опять же - поскольку с квадратами всё то же самое, вы никак не использовали, что там во второй скобке, то если бы ваше рассуждение было правильным, оно доказывало бы несуществование пифагоровых троек)

 Профиль  
                  
 
 Re: Еще один вариант для кубов
Сообщение13.12.2022, 14:12 


17/06/18
409
Здесь Вы правы, что-то мне померещилось. Вернемся к началу темы. Вот к этому:
dick в сообщении #1566133 писал(а):
Предположим, что выполняется равенство: $x^3+y^3=z^3$ (1); где $x,y,z$ – взаимно простые натуральные числа, $z,y$- числа разной четности, а $x$- нечетное.
Предположим, что $x$ не делится на 3 и $y=x+k_1$; $z=x+k_2$;
Тогда из (1) следует: $x^3-3(k_2-k_1)x^2-3(k_2^2-k_1^2)x-(k_2^3-k_1^3)=0$ (1.1);
Поскольку три из четырех слагаемых левой части (1.1) делятся на $x$, четвертое также делится на $x$, то есть $k_2^3-k_1^3=bx$, где $b$- натуральное число.
После сокращения (1.1) на $x$ и несложных преобразований получим:
$x^2-b=3(k_2-k_1)(x+k_2+k_1)$ (1.2);
Поскольку правая часть (1.2) всегда делится на 6, то левая также всегда делится на 6. Следовательно, если $x$ не делится на 3, то $b=1$ или $x=k_2^3-k_1^3$.

И к этому:
gris в сообщении #1566136 писал(а):
Вот тут немножко непонятно: почему бы бэ не быть семёркой или двумястами девяноста пятью? Чего сразу единичка?

$5^2-1=6\cdot 4;\quad 5^2-7=6\cdot 3;\quad 49^2-295=6\cdot 351$

Чего не догоняю? :roll:


А что если $x=k_2^3-k_1^3$, потому что слева единственный корень уравнения, а справа свободный член, как у Виета?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 207 ]  На страницу Пред.  1 ... 3, 4, 5, 6, 7, 8, 9 ... 14  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Mikhail_K


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group