2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 9, 10, 11, 12, 13, 14, 15 ... 21  След.
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 10:46 


23/01/07
3419
Новосибирск
Soul Friend в сообщении #1511235 писал(а):
а вот $\varphi_2(35)=15$.

Вообще-то там $14$ пар.

-- 26 мар 2021 14:48 --

Soul Friend в сообщении #1511242 писал(а):
я подумал что это констатация факта, а это оказывается оговорка. Учту. Но, если не ошибаюсь, функции должны определяться однозначно, а если хотите где-то применять $p-2$ используйте $\varphi_2(p)+1$

Нет, так будет не удобно, т.к. и у примориала тоже всего лишь $+1$

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 10:56 


31/12/10
1555
Soul Friend
Из этого положения легко можно выйти.
Надо сразу дать определение.
Если меньший вычет пары меньше модуля,
то пара принадлежит этому модулю

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 11:03 
Аватара пользователя


12/10/16
637
Almaty, Kazakhstan
Батороев в сообщении #1511243 писал(а):
Вообще-то там $14$ пар.

(1;3)(9;11)(11;13)(17;19)(27;29)(29;31)(31;33)
7 пар нечётных.
(2;4)(4;6)(6;8)(16;18)(22;24)(24;26)(26;28)(32;34)
8 пар чётных чисел.

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 11:23 


31/12/10
1555
Soul Friend
26,28

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 11:34 


23/01/07
3419
Новосибирск
Поясню про функцию $\varphi_{2}(p)$, чтобы и Вам, и другим стало понятнее.

Вычисление с этой функцией эквивалентно проверке кольца квадратов чисел по основанию простого $p$.

Как известно, квадратичных вычетов в кольце простого - всех по $2$. В данном рассмотрении используются вычеты $\pm 1\pmod p$*.
$(a_{j}^2-1)= (a_{j}-1)\cdot (a_{j}+1)\equiv 0\pmod p$, где $j$ - порядковый номер натурального числа в кольце простого $p$. Такие вычеты исключаются из рассмотрения.
Таким образом, каждому простому приводится в соответствие $(p-2)$ вычетов, определяющих пары, взаимно простых с $p$.


*Примечание: В принципе, можно использовать и другие вычеты (в зависимости от характера решаемой задачи).
И вообще, можно найти применение любым $\varphi_{n}$, где $n$ - натуральное числа. Но при этом придется учесть некоторые нюансы.

-- 26 мар 2021 15:38 --

Soul Friend
Попробуйте теперь с квадратичными вычетами. Уверен, будет проще.

-- 26 мар 2021 15:53 --

В расчете по квадратичным вычетам всегда остается $a_{p}=p$. Т.е. учитывается лишняя пара $(p-1)\cdot (p+1)$, в которой число $p+1$ не входит в интервал. Но за то при мультиплитировании (не знаю, правильно ли написал название операции) это не позволит потерять пары на стыках "тиражируемых" интервалов. Взамен появится новая аналогичная, но уже в конце нового интервала и т.д.

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 12:48 


31/12/10
1555
Никакого отношения функция $\varphi_2(p) $ к квадратичным вычетам не имеет.
Максимальное число взаимно простых вычетов дает функция Эйлера $\varphi(p)$ (ПСВ).
Среди них есть пары вычетов с разностью $d=2$. Число их определяется числом
размещений 2-х вычетов среди вычетов ПСВ (приведенная система вычетов) по модулю $p$. т.е.
$\varphi_2(p)=\varphi(p)-1= p - 2$
Предварительное определение.
Если меньший вычет пары меньше модуля, то пара принадлежит этому модулю.

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 13:23 


23/01/07
3419
Новосибирск
vorvalm в сообщении #1511094 писал(а):
Я извиняюсь, вы что имеете в виду ?

Не засоряйте мою тему. Пуржите у себя.

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 13:35 


31/12/10
1555
Батороев
И это все , что вы можете сказать ?

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 13:38 


23/01/07
3419
Новосибирск
Если вы выполните, то что я написал, то "Да!"

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 13:40 


31/12/10
1555
Батороев
Спасибо и на этом.
А может вам помочь доказать мультипликативность $\varphi_2(m)$ ?

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 13:45 


23/01/07
3419
Новосибирск
vorvalm в сообщении #1511273 писал(а):
Батороев
Спасибо и на этом.

В смысле?! Вы считаете, что я вам в чем-то должен?

-- 26 мар 2021 18:00 --

А может, считаете, что функцию $\varphi_{2}$ я подсмотрел у вас, то заблуждаетесь. Я ее вывел в теме (сообщение от 23.06.2009 г.). Вы похоже появились на форуме в 2010 г.
Батороев в сообщении #224131 писал(а):
Есть функция
$\Phi (p_i, p_j) = \dfrac{p_i-2}{p_i}\cdot\dfrac{p_{i+1}-2}{p_{i+1}}...\dfrac{p_j-2}{p_j} \cdot N$, (2)


Я мог бы предположить обратное, но грешить не буду.

-- 26 мар 2021 18:10 --

vorvalm в сообщении #1511273 писал(а):
А может вам помочь доказать мультипликативность $\varphi_2(m)$ ?

Вы тоже похоже не читатель.
Батороев в сообщении #1511054 писал(а):
Поэтому свойства мультипликативности обосновывать не стал, хотя это не сложно и ничем не отличается от функции Эйлера.

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 14:47 


31/12/10
1555
Батороев в сообщении #1511274 писал(а):
Батороев в сообщении #224131

писал(а):
Есть функция
$\Phi (p_i, p_j) = \dfrac{p_i-2}{p_i}\cdot\dfrac{p_{i+1}-2}{p_{i+1}}...\dfrac{p_j-2}{p_j} \cdot N$, (2)

Эту функцию я впервые нашел у К.Прахара, где он доказывает известную теорему В.Бруна.
Так что извините, я тут ни при чем.

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 14:56 


23/01/07
3419
Новосибирск
ОК

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 16:18 
Заслуженный участник


20/08/14
11177
Россия, Москва
Продолжу (больше для себя) переводить доказательство на человеческий, да не будет автор в обиде.

Получив оценку простых близнецов в интервале $(p_s \approx \sqrt{p_r\#} \ldots p_r\#)$ в виде $L_2(p_r\#)$ с некоторой ошибкой/погрешностью относительно истинного числа пар (обозначу как $y_2(p_r\#)$), попробуем убрать эту погрешность, сравнив количество пар $L_2(p_r\#)$ с заведомо меньшим количеством чем $y_2(p_r\#)$, в качестве которого выберем $\varphi_2(p_r\#)/p_s>0$. Доказательство что $\varphi_2(p_r\#)/p_s$ всегда меньше $y_2(p_r\#)$ отсутствует, потому проверю своим любимым методом — численным расчётом, см. ниже. Если для всех больших $p_r$ будет выполнено сравнение $L_2(p_r\#) > \varphi_2(p_r\#)/p_s$, то значит в любом интервале $(p_s \approx \sqrt{p_r\#} \ldots p_r\#)$ всегда найдётся минимум одна пара простых близнецов, что и будет доказательством их бесконечности.

Для этого перепишем выражение для $L_2(p_r\#)$ в виде (нумерация формул соответствует доказательству автора):
$$L_2(p_r\#)=\varphi_2(p_r\#)u(p_r\#),\; u(p_r\#)=\dfrac{\varphi_2(p_s\#) p_r\#}{\varphi_2(p_r\#) p_s\#}\;\;\eqno(5)$$
Здесь коэффициент $u(p_r\#)$ имеет смысл доли простых близнецов из всех взаимно простых с праймориалом пар.

Сравнение $L_2(p_r\#)>\varphi_2(p_r\#)/p_s$ перепишем так:
$$L_2(p_r\#) = \varphi_2(p_r\#) u(p_r\#) > \varphi_2(p_r\#)/p_s$$И упрощая:
$$u(p_r\#)=\dfrac{\varphi_2(p_s\#) p_r\#}{\varphi_2(p_r\#) p_s\#} > \dfrac{1}{p_s}\;\;\eqno(8)$$
Далее преобразуя его (опускаю, есть у автора) приходим к (10) автора, которое (а соответственно и (8)) строго выполняется начиная с $p_r=5$.
Собственно на этом доказательство и завершается.

Насколько понимаю, осталось одно тонкое место, с доказательством $y_2(p_r\#)\ge\varphi_2(p_r\#)/p_s$, хотя бы для всех достаточно больших $p_r$. Предыдущее недоказанное место про равномерность распределения пар в малых диапазонах поглотилось этим тонким местом.
Правомерность вычисления $\varphi_2(p\#)$ как произведения простых минус 2 считаю доказанным.


Ну и численная проверка справедливости замены $y_2(p_r\#)/\varphi_2(p_r\#)$ на $1/p_s$, первое должно быть не меньше второго:
\begin{tabular}{llllll}
$p_r\#$ & $L_2(p_r\#)$ & $y_2(p_r\#)$ & $u(p_r\#)$ & $y_2(p_r\#)/p_r\#$ & $1/p_s$ \\
$5\#=30$ & $3$ & $2$ & $1$ & $6.667\cdot10^{-2}$ & $2.000\cdot10^{-1}$ \\
$7\#=210$ & $1.038\cdot10^{1}$ & $12$ & $6.923\cdot10^{-1}$ & $5.714\cdot10^{-2}$ & $7.692\cdot10^{-2}$ \\
$11\#=2310$ & $5.891\cdot10^{1}$ & $63$ & $4.364\cdot10^{-1}$ & $2.727\cdot10^{-2}$ & $2.128\cdot10^{-2}$ \\
$13\#=30030$ & $4.564\cdot10^{2}$ & $456$ & $3.074\cdot10^{-1}$ & $1.518\cdot10^{-2}$ & $5.780\cdot10^{-3}$ \\
$17\#=510510$ & $4.868\cdot10^{3}$ & $4606$ & $2.186\cdot10^{-1}$ & $9.022\cdot10^{-3}$ & $1.410\cdot10^{-3}$ \\
$19\#=9699690$ & $6.216\cdot10^{4}$ & $57371$ & $1.642\cdot10^{-1}$ & $5.915\cdot10^{-3}$ & $3.216\cdot10^{-4}$ \\
$23\#=223092870$ & $1.004\cdot10^{6}$ & $895790$ & $1.262\cdot10^{-1}$ & $4.015\cdot10^{-3}$ & $6.698\cdot10^{-5}$ \\
$29\#=6469693230$ & $2.110\cdot10^{7}$ & $18462703$ & $9.825\cdot10^{-2}$ & $2.854\cdot10^{-3}$ & $1.243\cdot10^{-5}$ \\
$31\#=200560490130$ & $4.929\cdot10^{8}$ & $425173575$ & $7.916\cdot10^{-2}$ & $2.120\cdot10^{-3}$ & $2.233\cdot10^{-6}$ \\
\end{tabular}
Как видно замена допустима начиная с $p_r=11$ "и далее везде". Ну и соответственно выполняется $u(p_r\#)>1/p_s\eqno(8)$, что собственно было доказано.

UPD. Добавлены $29\#, 31\#$ в таблицу.

 Профиль  
                  
 
 Re: Распределение взаимнопростых чисел в примориалах.
Сообщение26.03.2021, 16:28 
Аватара пользователя


12/10/16
637
Almaty, Kazakhstan
Батороев
а функция $L_{2}(p_{r}\#)$ для $p_5=11$ посчитает эту пару $\{167;169\}$ как простые близнецы ?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 302 ]  На страницу Пред.  1 ... 9, 10, 11, 12, 13, 14, 15 ... 21  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: tolstopuz


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group