2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 6, 7, 8, 9, 10, 11, 12 ... 42  След.
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение15.03.2021, 20:52 


31/12/10
1555
Dmitriy40
Вы совершенно правильно нашли 12 разностей $d=40$.
Я просто не учел симметричность вычетов ПСВ, поэтому эти разности
попарно являются отражением друг друга относительно центра ПСВ.
Еще раз спасибо.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение16.03.2021, 06:36 


23/01/07
3497
Новосибирск
Dmitriy40 в сообщении #1509409 писал(а):
Батороев
Да указали уже выше что ошибся в этом.

Если я правильно понял задачу (а уж совпадает это с вашим или не совсем мне неизвестно), то нет, количества числителю равны не всегда:
Используется синтаксис Text
3#=6/2, 1/3: nums=1..1
5#=30/2, 4/15: nums=4..4
7#=210/6, 8/35: nums=8..8
11#=2310/30, 16/77: nums=15..17 -- не все равны
13#=30030/30, 192/1001: nums=190..194 -- не все равны
17#=510510/30, 3072/17017: nums=3072..3072
19#=9699690/30, 55296/323323: nums=55296..55296
23#=223092870/330, 110592/676039: nums=110582..110604 -- не все равны
29#=6469693230/2310, 442368/2800733: nums=442353..442387 -- не все равны

Я извиняюсь, не увидел поправку уважаемого форумчанина. ((
Задачу Вы правильно поняли.
Моя мысль заключалась в том, нельзя ли без потери качества опуститься таким образом до чисел в числителе, входящих в диапазон от $p_{r}^2$ до $p_{r+1}^2$, где как Вы знаете, взаимно простые все простые. Конечно, "дикая идея", но все же было интересно.
Спасибо!

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение16.03.2021, 09:18 
Заслуженный участник


20/08/14
11867
Россия, Москва
Ну для проверенных флуктуации $\Delta$ не превосходят $p_r$, может это как-то поможет, особенно если брать $\lim\limits_{p_r\to\infty}$, когда относительная флуктуация $\Delta/p_r$ будет бесконечно малой ...

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение16.03.2021, 09:57 


23/01/07
3497
Новосибирск
Dmitriy40
Не сочтите за наглость, но еще есть давнишняя задумка: что, если числитель и знаменатель поделить на $2^{r-1}$? Я когда-то давно пытался "вручную" проверять (до $13\#$) и были погрешности, но небольшие, если память не подводит, типа $(-2)$.

-- 16 мар 2021 13:59 --

p.s. Знаменатель окажется нецелым, но на мой взгляд, ничего страшного.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение16.03.2021, 12:40 
Заслуженный участник


20/08/14
11867
Россия, Москва
Батороев
По моему стало только хуже:
Используется синтаксис Text
3#=6/4, 0.5/1.50: nums=0..1
5#=30/8, 1/3.75: nums=1..1
7#=210/48, 1/4.38: nums=0..2
11#=2310/480, 1/4.81: nums=0..2
13#=30030/960, 6/31.28: nums=3..9
17#=510510/1920, 48/265.89: nums=43..53
19#=9699690/3840, 432/2525.96: nums=425..439
23#=223092870/84480, 432/2640.78: nums=422..443
Странность с $3\#$ связана с тем что в программе нигде не проверяется равенство чего-либо числителю, лишь на взаимную простоту с $p_r\#$, и среди всего множества значений $nums=0\ldots1$ ни одно из этих количеств разумеется $0.5$ равно не будет.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение16.03.2021, 13:26 


01/07/19
244
vorvalm в сообщении #1509411 писал(а):
Dmitriy40
Вы совершенно правильно нашли 12 разностей $d=40$.
Я просто не учел симметричность вычетов ПСВ, поэтому эти разности
попарно являются отражением друг друга относительно центра ПСВ.
Еще раз спасибо.

Почему их должно быть 12 (6)?
Есть какая-то формула?

А вообще, интересно бы знать, какие интервалы вообще должны появляться в каждом из праймориалов,
и какое их количество на данном праймориале.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение16.03.2021, 18:25 


31/12/10
1555
Yury_rsn в сообщении #1509513 писал(а):
Есть какая-то формула?

Совершенно верно. Для определения числа различных (не очень больших) разностей
в ПСВ (приведенная система вычетов) по модулю $M=p\#$ существуют определенные формулы.
Есть и эксклюзивные методы определения больших разностей.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение16.03.2021, 18:56 


23/01/07
3497
Новосибирск
Dmitriy40
Я извиняюсь, толком не объяснил новый вопрос.
Имелось в виду поделить на $2^{r-1}$ не полученные в первом рассмотрении дроби, а исходную: $\dfrac {\varphi_{p_{r}\#}}{p_{r}\#}$
Пример (записано по Вашему образцу, но рассмотрены только первые интервалы):

$3\#=6/4, 1/3: nums=1..$
$5\#=30/8, 2/7,5: nums=2..$
$7\#=210/48, 6/26,25: nums=6..$
$11\#=2310/480, 30/144,375: nums=30..$
$13\#=30030/5760, 180/938,44: nums=178..$

В последнем примориале мог ошибиться.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение16.03.2021, 19:28 
Заслуженный участник


20/08/14
11867
Россия, Москва
Батороев
Если на $\gcd(\varphi(p_r\#),p_r\#)$ не сокращать, то деление будет на степени двойки, в остальном вроде похоже на ваше:
Используется синтаксис Text
3#=6/2, 1/3: nums=1..1
5#=30/4, 2/7: nums=2..2
7#=210/8, 6/26: nums=6..6
11#=2310/16, 30/144: nums=30..30
13#=30030/32, 180/938: nums=178..182
17#=510510/64, 1440/7976: nums=1435..1446
19#=9699690/128, 12960/75778: nums=12956..12967
23#=223092870/256, 142560/871456: nums=142550..142569
Как-то лучше не стало.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение16.03.2021, 20:06 


23/01/07
3497
Новосибирск
Dmitriy40
Все равно спасибо! Попробую проанализировать полученные Вами результаты.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение16.03.2021, 20:14 


23/02/12
3372
Yury_rsn в сообщении #1508949 писал(а):
всё-таки формулы (4.1) очень важны для ясности доказательства
Рискну добавить
https://drive.google.com/file/d/1GWebsx ... sp=sharing

Кроме 4.1 на стр. 30 Прахара дана теорема 4.2:

При постоянной $\alpha>-1$ имеет место неравенство:
$$c_{11} \frac {x^{1+\alpha}}{\ln(x)} < \sum_{p \leq x} p^{\alpha} < c_{12} \frac {x^{1+\alpha}}{\ln(x)},(x \geq 2),(1)$$ причем $c_{11},c_{12}$ зависят от $\alpha}$. Доказательство не в одну строчку.

Если в (1) подставить $\alpha=0$, то получим теорему Чебышева:
$$c_{11} \frac {x}{\ln(x)} < \pi(x)=\sum_{p \leq x} {1} < c_{12} \frac {x}{\ln(x)}.(2)$$

Известно, что в (2) $c_{11}=c_{12}=1$ и получаем асимптотический закон распределения простых чисел:
$$\pi(x) \sim \frac {x}{\ln(x)}.$$

Более точно асимптотический закон распределения простых чисел имеет вид:
$$\pi(x) =\sum_{p \leq x} {1} \sim \int_2^x {\frac{dt}{\ln(t)}}.(3)$$

Как было доказано выше асимптотический закон распределения сумм функций простых чисел имеет вид, похожий на (3):
$$\sum_{p \leq x} f(p) \sim  \int_2^x {\frac{f(t)dt}{\ln(t)}}.(4)$$

На основании (4), легко получим асимптотику суммы степенной функции от простых чисел:
$$\sum_{p \leq x} p^{\alpha} \sim \int_2^x {\frac{t^{\alpha}dt}{\ln(t)}}.$$
или
$$\sum_{p \leq x} \ln(p) \sim \int_2^x {\frac{\ln(t)dt}{\ln(t)}} \sim x.$$

Аналогично, используя (4), в одну строчку, находится асимптотика суммы любой функции простых чисел, удовлетворяющей указанным выше условиям.

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение17.03.2021, 01:00 


01/07/19
244
vicvolf в сообщении #1509616 писал(а):
Аналогично, используя (4), в одну строчку, находится асимптотика суммы любой функции простых чисел, удовлетворяющей указанным выше условиям.

Какие новые формулы можно получить из этих равенств?
Для каких нерешенных задач они могут пригодиться?

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение17.03.2021, 11:53 


01/07/19
244
Dmitriy40 в сообщении #1472498 писал(а):
Добавлю где обнаружились максимальные разности:
$11\#:113+14$
$13\#:9439+22$
$17\#:217127+26$
$19\#:60043+34$
$23\#:20332471+40$
$29\#:417086647+46$

Дмитрий, можно ли вас еще попросить - найдите, пожалуйста, вот эту информацию:
- какие интервалы появляются в каждом из праймориалов?
- и какое их количество на каждом праймориале?

Например,
Для 7#
$10 = 1\cdot 2$

$8= 1\cdot 2$

$6 = 6\cdot 2$

$4= 8\cdot 2+1$

$2= 8\cdot 2$
Умножение на два - это потому, что разности на праймориале расположены симметрично относительно середины.
А разность 4 - еще расположена и посередине, потому $+1$
---
Или можно сокращенно записать - 10 (2), 8 (2), 6 (12), 4 (17), 2 (16),

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение17.03.2021, 16:22 


31/12/10
1555
Yury_rsn
Я извиняюсь, но никак не могу найти разность $d=10$
между простыми числами в праймориале $7\# $ ???

 Профиль  
                  
 
 Re: Максимальные интервалы между взаимно простыми числами
Сообщение17.03.2021, 16:33 
Заслуженный участник


20/08/14
11867
Россия, Москва
Yury_rsn
Держите:
Используется синтаксис Text
3#: n=1: 4=1
5#: n=7: 2=2, 4=3, 6=2
7#: n=47: 2=14, 4=15, 6=14, 8=2, 10=2
11#: n=479: 2=134, 4=135, 6=142, 8=28, 10=30, 12=8, 14=2
13#: n=5759: 2=1484, 4=1485, 6=1690, 8=394, 10=438, 12=188, 14=58, 16=12, 18=8, 22=2
17#: n=92159: 2=22274, 4=22275, 6=26630, 8=6812, 10=7734, 12=4096, 14=1406, 16=432, 18=376, 20=24, 22=78, 24=20, 26=2
19#: n=1658879: 2=378674, 4=378675, 6=470630, 8=128810, 10=148530, 12=90124, 14=33206, 16=12372, 18=12424, 20=1440, 22=2622, 24=1136, 26=142, 28=72, 30=20, 34=2
23#: n=36495359: 2=7952174, 4=7952175, 6=10169950, 8=2918020, 10=3401790, 12=2255792, 14=871318, 16=362376, 18=396872, 20=61560, 22=88614, 24=48868, 26=7682, 28=5664, 30=2164, 32=72, 34=198, 36=56, 38=2, 40=12
29#: 2=214708724 4=214708725 6=280323050 8=83120450 10=97648950 12=68713708 14=27403082 16=12199404 18=14123368 20=2594160 22=3324402 24=2100872 26=386554 28=324792 30=154220 32=10128 34=15942 36=7228 38=570 40=1464 42=272 44=12 46=2
31#: 2=6226553024 4=6226553025 6=8278462850 8=2524575200 10=2985436650 12=2206209208 14=903350042 16=423955224 18=512670088 20=106604280 22=126682650 24=88337252 26=18298102 28=16461600 30=9169532 32=833688 34=1075458 36=620632 38=77042 40=128988 42=40636 44=3516 46=1794 48=1296 50=504 52=20 54=84 56=12 58=2
Праймориал, суммарное количество всех разностей, список из разности и сколько раз она встретилась.

vorvalm в сообщении #1509745 писал(а):
Я извиняюсь, но никак не могу найти разность $d=10$
между простыми числами в праймориале $7\# $ ???
Вот она: $1\ldots11$ и $199\ldots209$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 624 ]  На страницу Пред.  1 ... 6, 7, 8, 9, 10, 11, 12 ... 42  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group