Очень мало учебников, написанных живым человеческим языком. Бог с ним, с формализмом. Раз уж вам он так необходим, дайте его мелким шрифтом или в конце параграфа, но объясняйте же нагляднее. Да почти все в математике можно иллюстрировать наглядными примерами. По крайней мере в тех областях, в которых я что-то понимаю, меня не затруднит объяснить ход и цель рассуждения, нарисовать схематически картинку и т.д. Такие учебники есть, но далеко не по всем разделам, так еще и попробуй их найди.
Вот так уже более конкретно и более понятно о чем вы говорите. Я бы не сказал, что таких учебников очень мало, но то, что многие учебники можно было бы улучшить - мне тоже кажется. Я недавно писал по этому поводу в теме
“Идеальный учебник”, включая например:
Введение новых понятий
1. Понятия не просто определяются (непонятно зачем и почему именно так), а приводится достаточно много мотивировок, объясняющих для чего это полезно, логично или просто интересно. При этом часто полезно, когда определение сначала неформальное, а после некоего обсуждения, когда читатель уже психологически привык, что сейчас будет что-то полезное, приводится уже полная и строгая формулировка.
[...]
3. Приводятся примеры как новое понятие проявляет себя в разных ситуациях. Для тех же групп – много примеров разных групп: группа преобразований (заодно можно сказать, что это универсальный пример группы), группа перестановок, целые числа по сложению и т.д.
4. С какими другими понятиями в математике это связано и в чем проявляется эта связь. Это можно рассказывать не сразу, а чуть позже, когда читатель лучше освоится с новым понятием. Но совсем пропускать это плохо, иначе у него не будет устанавливаться достаточно количества ассоциативных связей.
5. Для математических понятий также полезными будут примеры их проявления в физике или в целом в реальном мире вокруг нас. Например, снова на примере групп, рассказать про симметрии объектов вокруг нас. Для классов вычетов - напомнить про четные/нечетные числа, часы, дни недели и месяцы. И даже для простых множеств можно приводить много интересных практических иллюстраций для отношений эквивалентности и фактор множеств.
Теоремы и доказательства
1. Аналогично как и при введении новых понятий, для теорем тоже полезно объяснять:
- Мотивировки.
- Что изменится если поменять какие-то из условий в теореме. Например, что именно в условии наиболее существенно. При каких более мягких условиях может быть верно более мягкое условие теоремы (и наоборот). Для более продвинутых читателей, каким будет аналог этого утверждения в других категориях.
[...]
3. В теоремах (особенно достаточно длинных и сложных, но ИМХО вообще в любых) полезно начинать с того, в чем основная идея того, почему это верно. Это то, что останется после того, как все детали забудутся или когда они вообще не особо важны. И это то, что будет создавать ассоциативные связи в мозгу с другими понятиями и теоремами. Конечно, это не исключает того, что читатель должен стараться догадаться до основной идеи еще до прочтения доказательства.
Иллюстрации и общее оформление
1. Речь идет не (только) о картинках или фигурах (они тоже полезны, но не всегда уместны), а (также) о добавлении графических деталей к текстовому и формальному изложению. Вне зависимости от того нравится ли больше читателю “алгебра”, “геометрия” или “анализ” мышление всегда образное. Примерами помогающими лучше представить и освоить новые понятия могут быть блок-схемы, коммутативные диаграммы, кружки множеств, стрелки между множествами и т.д.
2. К этому же относятся иллюстрации зависимости между понятиями и теоремами. Мне всегда казалось странным, почему в учебниках обычно пренебрегают возможностями иллюстративно показать какие логические элементы используются в новых понятиях, где еще они использовались, какими идеями связаны теоремы и т.д.