Одного такого физика я могу вам предоставить, это я

Конечно, формально классическая механика -- часть физики. Но по нынешним временам это физически бессодержательная часть физики. Все там понятно, никаких хоть сколь-нибудь нерешенных
физических проблем там нет.
Т.е. то чем занимается целое отделение механики Мехмата бессодержательно с точки зрения физики? Мне кажется мы привыкли, что современная физика, это только квантовая физика,
а ведь это не совсем верно. В классической механике есть ряд нерешенных задач, напр. турбулентность, work hardening и т.д. Или Вы считаете что это больше математическая проблема?
Мне кажется тут нужны именно физические теории. Насчет классической механики всё не просто ещё по другой причине. Тут присутствующие "американцы" это подтвердят. В Северной Америке механикой занимаются на Mechanical Engineering, т.е. примерно то чему учат в Бауманке или другом политехе. Поэтому наши мехматовские механики попадая в эту среду чувствуют себя не совсем комфортно, хотя их ценят за их высокий математический уровень. Чистая математическая механика там никому не нужна, им подавай CFD (computational fluid dynamics) или что-то подобное автомобильно-самолётное.
Про второй я ничего сказать не могу (т.к. не знаю, что это такое). Что касается первого, то, очевидно, имеется в виду симметрический, но не самосопряженный оператор

с областью определения

. Действительно, оба его индекса дефекта

и поэтому он имеет однопараметрическое семейство самосопряженных расширений с областями определения...
Вспоминаю лекции по функану на ФФ МГУ. Так вот наш преподаватель утверждал, что невозможно понять квантовую механику (КМ) без понятия интеграла Лебега, а то, что делают преподаватели на общефакультетском курсе КМ это танцы с бубном, ибо большинство физиков не знает что такое

. В области в которой я работаю, квантовая химия, т.е. решение электронного уравнения Шрёдингера, и теоретическая молекулярная спектроскопия, т.е. решение ядерного уравнения Шрёдингера, 90% в страшном сне не слышали про интеграл Лебега, и, что интересно, прекрасно себя чувствуют, получают гранты и публикуются в ведущих журналах. Понимают ли они основы квантовой механики, не уверен, но это не мешает им выводить зубодробительные формулы напр. теории связанных кластеров (сoupled clusters).
Обратите внимание, что я не использую профессиональных сокращений в своем посте, чтобы другие участники не ломали голову и не лезли в гугл

. А если использую, то объясняю их.