2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8 ... 14  След.
 
 Re: Исследование честности голосований от Сергея Шпилькина
Сообщение05.07.2020, 14:09 
Заслуженный участник
Аватара пользователя


16/07/14
9147
Цюрих
EUgeneUS в сообщении #1472345 писал(а):
бабочка
Что конкретно вы понимаете под "бабочкой"?
EUgeneUS в сообщении #1472345 писал(а):
вид данной кривой
А в каких координатах кривая-то?

 Профиль  
                  
 
 Re: Исследование честности голосований от Сергея Шпилькина
Сообщение05.07.2020, 14:12 
Аватара пользователя


11/12/16
13850
уездный город Н
mihaild в сообщении #1472349 писал(а):
EUgeneUS, $T_e$ и $T_E$ - это одно и то же? Есл инет, то что такое $T_e$? (аналогично про $F$)

Это одно и тоже. Поправил, где увидел.

mihaild в сообщении #1472349 писал(а):
Это вы получили, какой бывает доля голосов "за". Очевидно, что она бывает от $0$ до $1$.

Не только. Я получил теоретическую зависимость "доля за" - явка. То есть график имени Шпилькина.

mihaild в сообщении #1472349 писал(а):
Интересно именно распределение этой доли, а она зависит от распределения параметра "за".

От значения параметра "за" ($T$) зависит где будет больше точек около данной кривой. Ближе к началу или ближе к концу.
Не очень понял, что Вы тут понимаете под распределением

-- 05.07.2020, 14:15 --

mihaild в сообщении #1472352 писал(а):
А в каких координатах кривая-то?


Вот в таких, как на правом графике.

 Профиль  
                  
 
 Re: Исследование честности голосований от Сергея Шпилькина
Сообщение05.07.2020, 14:19 
Заслуженный участник


20/08/14
11766
Россия, Москва
Кстати добавлю ещё один момент насчёт графиков: попадание зелёного пересечения в пустое место не является аргументом за манипуляции. Это всего лишь следствие усреднения по всем точкам. Например центр масс фигуры в виде тора лежит вне её (в "пустом месте"). Использование же этого наблюдения как аргумента в пользу манипуляций является маркером (не)надежности и прочих выводов.

 Профиль  
                  
 
 Re: Исследование честности голосований от Сергея Шпилькина
Сообщение05.07.2020, 14:28 


21/02/20

738
Пусть, представим, есть некое государство с электоратом 100млн. Пусть в нем проходит референдум "А vs Б". Тогда количество участков для голосования столько-то, тогда посещаемость столько-то, проголосовали за "А" столько-то, ну и т.п. переменные, можно поиграться числами и узнать полный перечень нужных моделированию переменных. Вот на таком примере можно показать всё математическое моделирование (продукт Шпилькина или другой продукт, может разработки кого-то из наших формчан), выявляющее мошенничество или отсутствие оного, а? Или это слишком сложная штука?

 Профиль  
                  
 
 Re: Исследование честности голосований от Сергея Шпилькина
Сообщение05.07.2020, 14:30 
Заслуженный участник
Аватара пользователя


22/06/12
2129
/dev/zero
EUgeneUS в сообщении #1472345 писал(а):
$\tau_i = \frac{t_i}{t_i + f_i} = \frac{\alpha_i T_E}{\alpha_i T_E + (1-\alpha_i) F_E}$ - результат голосования: доля голосов "За"


Опущу индекс $i$.

Будем считать, что $\alpha$ распределено нормально со средним $\overline{\alpha}$ и запишем его в виде $\alpha = \overline{\alpha} + \sigma \varepsilon$, где эпсилон распределён стандартно. Если трактовать $\lambda = F_E/T_E$ как малый параметр (порядка 1/5), то можно попытаться сделать вот что:
$$
\tau = \frac{1}{1 + \frac{1 - \alpha}{\alpha} \lambda} \approx 1 - \lambda \frac{1 - \alpha}{\alpha} = 1 + \lambda - \frac{\lambda}{\alpha}.
$$
У этой штуки хотя бы можно попытаться сосчитать распределение.

 Профиль  
                  
 
 Re: Исследование честности голосований от Сергея Шпилькина
Сообщение05.07.2020, 14:33 
Заслуженный участник
Аватара пользователя


16/07/14
9147
Цюрих
EUgeneUS в сообщении #1472353 писал(а):
Я получил теоретическую зависимость "доля за" - явка.
Всё-таки ИМХО её стоит явно выписать. У меня в ваших обозначениях получилось, что доля "за" равна $\frac{T_E}{T_E - F_E} - \frac{F_E T_E}{p (T_E - F_E)}$, где $p$ - явка.
Собственно ваша модель и Шпилькина дают разные прогнозы: ваша - гиперболическую зависимость явки и доли "за", Шпилькина - линейную. Вы проверяли, что лучше описывает данные? (если нет, то я вечером попробую проверить)
Кроме того, эта модель ничего не говорит про пики на целых значениях.
EUgeneUS в сообщении #1472353 писал(а):
Не очень понял, что Вы тут понимаете под распределением
Ваша модель говорит, какие точки "за-явка" возможны, но не говорит, в каких участках кривой их сколько будет.
Dmitriy40 в сообщении #1472356 писал(а):
Использование же этого наблюдения как аргумента в пользу манипуляций
А такое использование есть?

 Профиль  
                  
 
 Re: Исследование честности голосований от Сергея Шпилькина
Сообщение05.07.2020, 14:35 
Аватара пользователя


11/12/16
13850
уездный город Н
Вот типовая кривая с перекосом в активности избирателей

Изображение
Параметр $\alpha_i$ пробегает значения от $0.01$ до $1$ с шагом $0.01$

-- 05.07.2020, 14:47 --

mihaild в сообщении #1472360 писал(а):
Кроме того, эта модель ничего не говорит про пики на целых значениях.

Это отдельный вопрос.

mihaild в сообщении #1472360 писал(а):
Ваша модель говорит, какие точки "за-явка" возможны, но не говорит, в каких участках кривой их сколько будет.

А это следующий вопрос.

Действительно, как могут размещаться точки вблизи этой кривой?
1. Наиболее ожидаемый вариант - неким кластером вокруг какой-то одной точки. Он реализуется, когда $\alpha_i$ примерно одинаков, и имеется некий шум в параметрах модели. Реализацию такого паттерна можно найти в некоторых регионах в картинках Шпилькина.

2. Кластер в какой-то области кривой и некий разреженный хвост от него вдоль кривой. Такое тоже есть в картинках Шпилькина.

3. Несколько кластеров на кривой. Например, два. Очевидно, что в этом случае распределение $\alpha_i$ будет бимодальным и это нельзя объяснить стечением случайных обстоятельств.
Должен быть какой-то фактор, по которому разделяются кластеры. Для Татарстана, где кластеризация наиболее ярко выражена я его нашел - один кластер это Казань, второй - остальные участки. Вот на каком основании кто-то может утверждать, что доля "За" в Казани и какой-нибудь Елабуге должна быть одинакова?

4. Есть несколько регионов, которые в модель не укладываются. Например, когда точки группируются вдоль горизонтальной прямой. Это может быть в случае, когда участки по долям протестного и лояльного электората, одинаковы. (как в первом пункте) Но участки сильно разные по доступности. То есть на явку больше влияет не предпочтения избирателей, а доступность голосования.
Такие картинки тоже есть у Шпилькина, но для единичных регионов. Насколько помню, в Крыму или Севастополе так.

 Профиль  
                  
 
 Re: Исследование честности голосований от Сергея Шпилькина
Сообщение05.07.2020, 14:47 
Заслуженный участник
Аватара пользователя


22/06/12
2129
/dev/zero
mihaild в сообщении #1472360 писал(а):
Всё-таки ИМХО её стоит явно выписать

$$
p = \alpha T_E + (1 - \alpha) F_E = \alpha T_E \left(1 + \frac{1 - \alpha}{\alpha} \frac{F_E}{T_E} \right) = \alpha T_E \left(1 + \frac{1 - \alpha}{\alpha} \lambda \right),
$$
так что
$$
\tau = \frac{1}{1 + \frac{1 - \alpha}{\alpha} \lambda} = \frac{\alpha T_E}{p}.
$$
С ростом явки процент "за" понижается. При явке $p = 1$ получим $\tau = \alpha T_E$, как и должно быть.

 Профиль  
                  
 
 Re: Исследование честности голосований от Сергея Шпилькина
Сообщение05.07.2020, 14:51 
Аватара пользователя


11/12/16
13850
уездный город Н
StaticZero в сообщении #1472365 писал(а):
С ростом явки процент "за" понижается.

Нет!
Зависит от значения $\lambda$
При $\lambda > 1$ (протестные более активны) будет понижаться.
При $\lambda < 1$ (лояльные более активны) будет повышаться.

 Профиль  
                  
 
 Re: Исследование честности голосований от Сергея Шпилькина
Сообщение05.07.2020, 14:52 
Заслуженный участник
Аватара пользователя


22/06/12
2129
/dev/zero
EUgeneUS в сообщении #1472367 писал(а):
Зависит от значения

А покажите, как. Это значение вообще нигде не участвует.

 Профиль  
                  
 
 Re: Исследование честности голосований от Сергея Шпилькина
Сообщение05.07.2020, 14:54 
Заслуженный участник
Аватара пользователя


16/07/14
9147
Цюрих
StaticZero в сообщении #1472365 писал(а):
При явке $p = 1$ получим $\tau = \alpha T_E$, как и должно быть.
У вас же $p$ - функция от $\alpha$.

 Профиль  
                  
 
 Re: Исследование честности голосований от Сергея Шпилькина
Сообщение05.07.2020, 14:58 
Аватара пользователя


11/12/16
13850
уездный город Н
А теперь, что делает Шпилькин

Изображение

1. Шпилькин выбирает удобную ему точку на этой кривой. Иногда там есть кластер, а иногда там ничего.
2. Проводит горизонтальную линию (а мы видели, что горизонтальных линий в модели не возникает).
3. Всё, что выше (заштрихованная область), он объявляет манипуляциями властей.

Молодец, чего уж. Надо было более 10 лет заниматься темой, чтобы так поступать.

-- 05.07.2020, 14:58 --

StaticZero в сообщении #1472368 писал(а):
А покажите, как.

Я показал, и даже нарисовал. См. картинку выше.

 Профиль  
                  
 
 Re: Исследование честности голосований от Сергея Шпилькина
Сообщение05.07.2020, 15:03 
Аватара пользователя


07/03/16

3167
Александрович в сообщении #1472303 писал(а):
Я никак не могу понять, почему увеличение явки приводит к росту проголосовавших "за"? Кто-то может объяснить?

Я предполагаю, что увеличение явки связано с организованным голосованием. В случае моего участка - голосованием военнослужащих, но может быть голосование завода (скорее государственного) или голосование больницы с лежачими больными или какого-либо ВУЗа. А если уж человек позволил себя принудить голосовать, то более вероятно, что он проголосует за.

 Профиль  
                  
 
 Re: Исследование честности голосований от Сергея Шпилькина
Сообщение05.07.2020, 15:04 
Заслуженный участник
Аватара пользователя


22/06/12
2129
/dev/zero
mihaild в сообщении #1472369 писал(а):
У вас же $p$ - функция от $\alpha$.

Да, это правильно. Но $\alpha$ -- это же свободный параметр, характеризующий настроения избирателей на данном участке. В зависимости $\tau(p)$ та самая $\lambda$ не участвует.

 Профиль  
                  
 
 Re: Исследование честности голосований от Сергея Шпилькина
Сообщение05.07.2020, 15:12 
Аватара пользователя


27/02/12
3893
StaticZero в сообщении #1472336 писал(а):
Задача про сеточку, мне кажется, может быть сформулирована без введения параметра "честность".

Тогда это просто-напросто оффтоп, ибо "честность" - ключевое слово темы.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 196 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7, 8 ... 14  След.

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Bing [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group