2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4  След.
 
 Re: Угол
Сообщение24.04.2020, 20:02 


18/11/18
592
nnosipov в сообщении #1457705 писал(а):
Тогда задача решается не приходя в сознание.


Что в карантине вполне нормально? :D
Целым, конечно...

 Профиль  
                  
 
 Re: Угол
Сообщение24.04.2020, 20:05 


05/09/16
12061
nnosipov в сообщении #1457705 писал(а):
Тогда задача решается не приходя в сознание.

В смысле, "предположим, что градусная мера угла является целым числом, тогда она равна XX градусов и никак иначе"?

 Профиль  
                  
 
 Re: Угол
Сообщение24.04.2020, 20:07 
Заслуженный участник


20/12/10
9062
A_I в сообщении #1457707 писал(а):
Что в карантине вполне нормально? :D
О, да! Но если кому-то нужно, я объясню, что имелось в виду. Но после этого может пропасть интерес к подобным головоломкам.

 Профиль  
                  
 
 Re: Угол
Сообщение24.04.2020, 20:08 
Заслуженный участник
Аватара пользователя


13/08/08
14495
Кстати, лучше вместо $78^{\circ}$ взять $75^{\circ}$. И ответ будет $\alpha=30^{\circ}$.

 Профиль  
                  
 
 Re: Угол
Сообщение24.04.2020, 20:10 


05/09/16
12061
gris в сообщении #1457714 писал(а):
Кстати, лучше вместо $78^{\circ}$ взять $75^{\circ}$. И ответ будет $\alpha=30^{\circ}$.

А я вот взял 76, и ответ получился очень нецелый :(

 Профиль  
                  
 
 Re: Угол
Сообщение24.04.2020, 20:11 


18/11/18
592
nnosipov в сообщении #1457711 писал(а):
если кому-то нужно, я объясню, что имелось в виду. Но после этого может пропасть интерес к подобным головоломкам.


Очень интересно!..

 Профиль  
                  
 
 Re: Угол
Сообщение24.04.2020, 20:13 
Заслуженный участник


20/12/10
9062
wrest в сообщении #1457709 писал(а):
В смысле, "предположим, что градусная мера угла является целым числом, тогда она равна XX градусов и никак иначе"?
Нет, еще хуже: Вы это число просто увидите на экране, и все. Т.е. не решить задачу не удастся.

-- Сб апр 25, 2020 00:14:45 --

A_I в сообщении #1457716 писал(а):
Очень интересно!..
ОК, чуть позже напишу, сейчас интернет глючит.

-- Сб апр 25, 2020 00:35:59 --

wrest, A_I
Сначала ответ: $48^\circ$. Верно?

 Профиль  
                  
 
 Re: Угол
Сообщение24.04.2020, 20:45 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
Нашёл ошибку. Получается $$\tg\alpha=\left(\frac 1{\sin 54^{\circ}}-1\right)\tg 78^{\circ}.$$

 Профиль  
                  
 
 Re: Угол
Сообщение24.04.2020, 20:46 


05/09/16
12061
Someone в сообщении #1457729 писал(а):
Сначала ответ: $48^\circ$. Верно?

Да.

 Профиль  
                  
 
 Re: Угол
Сообщение24.04.2020, 20:55 
Заслуженный участник


09/05/12
25179
arseniiv в сообщении #1457692 писал(а):
Она недоопределена получается, если я всё правильно делал. Тоже хотел сказать «тут же простая система, какая же это загадка», а оказалось бам.
Да, действительно. Когда записал это, наткнулся на ту же проблему.

 Профиль  
                  
 
 Re: Угол
Сообщение24.04.2020, 20:59 


18/11/18
592
nnosipov в сообщении #1457718 писал(а):
Сначала ответ: $48^\circ$. Верно?


Верно. А формула зависимости от двух углов есть? (У меня нет, - я решал через уравнения координат прямых, формулу, наверное, можно вывести - ноя пошел, видимо, по сложному пути :cry: )

 Профиль  
                  
 
 Re: Угол
Сообщение24.04.2020, 21:08 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
nnosipov в сообщении #1457718 писал(а):
Сначала ответ: $48^\circ$. Верно?
Да. То, что у меня получилось после исправления описки — это действительно $\tg 48^{\circ}$.

Разумеется, дополнительно всплывшее условие, что угол измеряется целым числом градусов, я не использовал. И осталось ещё аккуратно преобразовать моё выражение в $\tg 48^{\circ}$.

 Профиль  
                  
 
 Re: Угол
Сообщение24.04.2020, 21:08 
Заслуженный участник


20/12/10
9062
Теперь, собственно, "безумное" решение. Используем для вычислений поле деления круга на $360$ частей: $\mathbb{Q}(\zeta)$, где $\zeta=\exp{(2\pi i/360)}$. Вершины 6-угольника на комплексной плоскости суть $1$, $\zeta^{60}$, $\zeta^{120}$ и т.д. Пусть точка внутри 6-угольника (см. картинку) --- это $X$. Тогда $X$ можно вычислить: $$X=2+\zeta^{12}-3\zeta^{36}+\zeta^{60}+\zeta^{84}-2\zeta^{24}+\zeta^{72}.$$Теперь вычислим число $$q=\frac{X-\zeta^{120}}{\zeta^{180}-\zeta^{120}}=\zeta^{12}-3\zeta^{48}+\zeta^{84}+\zeta^{24}+\zeta^{72}.$$Аргумент этого числа --- это и есть искомый $\alpha$. В принципе, он уже виден. Проверим догадку, разделив $q$ на $\zeta^{48}$. Получим: $$\frac{q}{\zeta^{48}}=-3+\zeta^{36}+\zeta^{-36}+\zeta^{24}+\zeta^{-24}.$$Ну вот, это число вещественно (совпадает со своим сопряженным), в чем и нужно было убедиться. Значит, $\alpha=48^\circ$.

-- Сб апр 25, 2020 01:12:11 --

A_I в сообщении #1457736 писал(а):
А формула зависимости от двух углов есть?
А о каких двух углах идет речь?

 Профиль  
                  
 
 Re: Угол
Сообщение24.04.2020, 21:15 


18/11/18
592
nnosipov в сообщении #1457738 писал(а):
А о каких двух углах идет речь?


78 и 78 ...

 Профиль  
                  
 
 Re: Угол
Сообщение24.04.2020, 21:20 
Заслуженный участник


20/12/10
9062
Собственно, я хотел сказать, что подобные задачи имеет смысл решать только геометрически, в порядке медитации. Тригонометрия и пр. здесь должны быть запрещены :-) На форуме alexlarin.com таких задач-головоломок целая куча; картинки там весьма замысловатые.

-- Сб апр 25, 2020 01:22:17 --

A_I в сообщении #1457740 писал(а):
78 и 78 ...
Если зависимость не слишком сложная, то она будет найдена. Но a priori успех не гарантирован.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 55 ]  На страницу Пред.  1, 2, 3, 4  След.

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group