2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3, 4, 5 ... 11  След.
 
 Совершенный кубоид
Сообщение25.11.2019, 02:37 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
Тема на все времена. Несколько замечаний, не претендуя на новизну. Задача сводится к системе диофантовых уравнений $\left\{\begin{matrix}
$A^2+B^2 & =X^2\\ 
B^2+C^2 &=Y^2 \\ 
C^2+A^2 &=Z^2 \\ 
A^2+B^2+C^2 & =T^2
\end{matrix}\right.$ Тут $A,B,C$ – длины рёбер воображаемого параллелепипеда, $X,Y,Z$ – длины диагоналей граней, $T$ – длина пространственной диагонали. Каждое из уравнений имеет общее решение, в том числе и последнее, с него и начнем. Положим

$A=2kln^2r$
$B=2mnl^2r$
$C=(k^2n^2+l^2m^2-l^2n^2)r$
$T=(k^2n^2+l^2m^2+l^2n^2)r$
и перепишем первые три уравнения так: $\left\{\begin{matrix}
T^2-A^2=Y^2\\ 
T^2-B^2=Z^2\\ 
T^2-C^2=X^2
\end{matrix}\right.$ Переменные $k,l,m,n$ можно считать целыми положительными числами, причем пары $(k,l)\ (m,n)$ взаимно просты. Последняя система состоит из трех пифагоровых троек, поэтому дробь $\dfrac{T+A}{T-A}$ есть квадрат рационального числа, то же и для остальных. Делая замены, получаем
$$\dfrac{T+A}{T-A}=\dfrac{(lm)^2+(kn+ln)^2}{(lm)^2+(kn-ln)^2}=\alpha ^2;\ \dfrac{T+B}{T-B}=\dfrac{(kn)^2+(lm+ln)^2}{(kn)^2+(lm-ln)^2}=\beta ^2;\ \dfrac{T+C}{T-C}=\dfrac{(kn)^2+(lm)^2}{(ln)^2}=\gamma ^2.$$Такой поворот тем хорош, что не теряя общности, удается избавиться не только от рационального коэффициента $r$, но и от общих делителей пифагоровых троек, которые вовсе не обязаны быть примитивными. Последнее равенство можно переписать тогда так: $\left ( \dfrac{k}{l} \right )^2+\left ( \dfrac{m}{n} \right )^2=\gamma ^2.$ Дроби в основании квадратов несократимы по условию, обозначим $\dfrac{k}{l}=x,\dfrac{m} {n}=y$. В этих терминах удается записать и предыдущие уравнения. Имеем систему в рациональных числах $\left\{\begin{matrix}
\dfrac{(x^2+1)(y^2+1)}{2x} & =\dfrac{\alpha ^2+1}{\alpha ^2-1}\\ 
\dfrac{(x^2+1)(y^2+1)}{2y} & =\dfrac{\beta ^2+1}{\beta ^2-1}\\ 
x^2+y^2 & =\gamma ^2
\end{matrix}\right.$ Для единообразия полезно еще сделать замены $\alpha =\dfrac{a+1}{a-1},\beta =\dfrac{b+1}{b-1}$ и обозначить $\dfrac{\alpha ^2+1}{\alpha ^2-1}=\dfrac{a^2+1}{2a}=F_a,\dfrac{\beta ^2+1}{\beta ^2-1}=\dfrac{b^2+1}{2b}=F_b.$ Почленным делением второго уравнения на первое получаем $\dfrac{x}{y}=\dfrac{F_b}{F_a}$, деление третьего уравнения на $y^2$ ведёт к $\left ( \dfrac{x}{y} \right )^2=\left ( \dfrac{\gamma }{y} \right )^2-1=\left ( \dfrac{F_b}{F_a} \right )^2.$ Тогда существует рациональное $c$ такое, что $\dfrac{F_b}{F_a}=\dfrac{c^2-1}{2c}$ (обозначим это $f_c$), и тут вопрос к специалистам по теории эллиптических кривых. На сколько помню, множества $F_n$ и $f_n$ не пересекаются. Возможно ли $\dfrac{F_b}{F_a}=f_c$ ? Если нет, идеального кирпича не существует. Выпишу на всякий случай итоговую систему, она такая:
$$\dfrac{F_b}{F_a}=\dfrac{x}{\sqrt{\dfrac{F_a}{F_x}-1}}=f_c$$ Первое равенство образует биквадратное уравнение относительно $x$, которое Вольфрам решает на двух страницах, но решение есть. Под радикалом $y^2$. Лучше конечно сразу искать значения $a,x$, при которых радикал окажется целым числом. Однако, если тут нет общего решения, дальнейшее уже ничего не доказывает. Ну, а если оба равенства верны, тем самым определены $x,y \Rightarrow k,l,m,n \Rightarrow A,B,C$.

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение26.11.2019, 02:05 
Заслуженный участник
Аватара пользователя


18/12/07
762
Последнее уравнение имеет бесконечное множество решений в рациональных числах.
Пример:
$$\[
a = 2,F_a  = \frac{{2^2  + 1}}{{2 \cdot 2}} = \frac{5}{4}
\]$

$$\[
b = \frac{{16}}{{15}},F_b  = \frac{{\left( {16/15} \right)^2  + 1}}{{2 \cdot \left( {16/15} \right)}} = \frac{{481}}{{480}}
\]$

$$\[
c = \frac{{25}}{{12}},F_c  = \frac{{\left( {25/12} \right)^2  - 1}}{{2 \cdot \left( {25/12} \right)}} = \frac{{481}}{{600}}
\]$

Есть и одно-параметрические решения.

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение26.11.2019, 07:46 


16/08/05
1153
В терминах $a,b,c$:

$(c (1 + b^2) + a b (1 - c^2))^2 = (c (1 + b^2))^2 - (b (1 - c^2))^2$

оно же:

$(c^2 (1 + a^2)^2 - (1 + 10 a^2 + a^4))^2 - (4 a b c - (1 + a^2) (c^2 - 1))^2 (1 + a^2)^2 = 16 a^2 (1 + 6 a^2 + a^4)$

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение26.11.2019, 08:07 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
Коровьев
Отлично. Последнее уравнение – имеется в виду $\dfrac{F_b}{F_a}=f_c$. Оно разрешимо, и, следовательно, таким способом ничего не доказать. Что и не удивительно.
Коровьев в сообщении #1427735 писал(а):
Есть и одно-параметрические решения.
Интересно, какой степени оказывается уравнение для $x$?

ps собственно, относительно $x$ оно в любом случае биквадратное )

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение26.11.2019, 19:48 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург

(Интересное свойство функции Fn)

По пути всплыло:

$F_aF_b=\dfrac{F{ab}+F{a/b}}{2}$
$F_aF_bF_c=\dfrac{F{abc}+F_{ab/c}+F_{bc/a}+F_{ca/b}}{4}$
$F_aF_bF_cF_d=\dfrac{F{abcd}+F_{ab/cd}+F_{bc/ad}+F_{ca/bd}+F_{abc/d}+F_{bcd/a}+F_{cda/b}+F_{dab/c}}{8}$
. . . . . и т.д. Произведение индексов — квадрат. Еще известное свойство: $F_n=F{\frac{1}{n}}.$

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение18.12.2019, 01:44 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
Andrey A в сообщении #1427540 писал(а):
$$\dfrac{F_b}{F_a}=\dfrac{x}{\sqrt{\dfrac{F_a}{F_x}-1}}=f_c$$

Под радикалом возникает уравнение $\dfrac{F_a}{F_x}-1=y^2$. Общего решения тут видимо нет, но можно дать пример 1-параметрического: $a=x^3,y=\dfrac{x^2-1}{x}$. Найти бы еще $x$ такое, что $\dfrac{x^6+1}{2x^3-2x}=F_b,\ \dfrac{x^2}{x^2-1}=f_c$. Можно и на елку повесить.

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение20.12.2019, 02:19 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
Andrey A в сообщении #1430764 писал(а):
... пример 1-параметрического: $a=x^3,y=\dfrac{x^2-1}{x}$.
А есть ли тут иные решения, кроме тривиальных вроде $a=x$ или $x=1,a=2n^2$? Что-то не уверен. Подозреваю, что и $\dfrac{x^2}{x^2-1}=f_c$ имеет всего одно решение: $x=2,c=3$. Возможно ошибаюсь. А так и до доказательства недалеко.

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение21.12.2019, 21:52 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
Вернемся на минуту к системе $\left\{\begin{matrix}
\dfrac{(x^2+1)(y^2+1)}{2x} & = F_a\\ 
\dfrac{(x^2+1)(y^2+1)}{2y} & = F_b\\ 
x^2+y^2 & =\gamma ^2
\end{matrix}\right.$ Сделаем замену $a \rightarrow \dfrac{xy+1}{x-y}$ (возможность такой замены — чистая гипотеза): $\dfrac{a^2+1}{2a}=\dfrac{(x^2+1)(y^2+1)}{2(x-y)(xy+1)}=F_a.$ Поделив это почленно на первое уравнение системы, получаем $x=(x-y)(xy+1)$ и при ненулевых $x,y$ имеем $y=\dfrac{x^2-1}{x}.$ Тогда $a=\dfrac{xy+1}{x-y}=x^3$, что образует некоторое $1-$параметрическое решение первого уравнения системы. Если других нет, то и второе уравнение решается подобно первому. В силу симметрии: $b=y^3, x=\dfrac{y^2-1}{y}$, откуда $xy=y^2-1=x^2-1$ и $\left | x \right |=\left | y \right |$, что делает неразрешимым в рациональных числах третье уравнение: $2x^2=2y^2=\gamma ^2.$

Вывод: либо существуют иные нетривиальные решения уравнения $\dfrac{F_a}{F_x}=y^2+1$, либо кубоид неразрешим.

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение07.03.2020, 04:11 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
НОВЫЙ ПОДХОД
(Все переменные целые числа, любые совпадения к предыдущему отношения не имеют).

Положим, переменные $x,y,z,t$ таковы, что выполняется равенство $x^2-y^2=z^2+t^2.$ Тогда верно и $x^2-t^2=z^2+y^2$, и $x^2-z^2=t^2+y^2.$ Могут ли все три значения оказаться целыми квадратами?
Запишем
$x^2-y^2=t^2+z^2=a^2$
$x^2-t^2=z^2+y^2=b^2\ \ (1)$
$x^2-z^2=y^2+t^2=c^2.$
Такая система описывает идеальный кирпич, поскольку $x^2=y^2+z^2+t^2$ (пространственная диагональ), остальное видно невооруженным глазом. Решая её как линейную систему, не обращая внимания на квадраты, получаем:
$x^2=\dfrac{a^2+b^2+c^2}{2}$
$z^2=\dfrac{a^2+b^2-c^2}{2}$
$y^2=\dfrac{b^2+c^2-a^2}{2}$
$t^2=\dfrac{c^2+a^2-b^2}{2}.$
И что-то оно напоминает. Перемножая почленно всё и домножая на $16$, имеем $$(4xyzt)^2=(a^2+b^2+c^2)(a^2+b^2-c^2)(b^2+c^2-a^2)(c^2+a^2-b^2)$$
Треугольник Герона со сторонами-квадратами. Этот вопрос уже поднимался https://dxdy.ru/post494877.html#p494877. Не сказать, что та же задача (поскольку скобочки там не обязательно удвоенные квадраты), но неразрешимость её свидетельствовала бы о неразрешимости кубоида. Можно еще записать так:
$$(2xyzt)^2=(ab)^4-\left ( \dfrac{a^4+b^4-c^4}{2} \right )^2=(bc)^4-\left ( \dfrac{b^4+c^4-a^4}{2} \right )^2=(ac)^4-\left ( \dfrac{a^4+c^4-b^4}{2} \right )^2.$$ С четвертыми степенями противоречий, как видим, не наблюдается. Еще одно следствие, на мой взгляд более важное: $$\begin{matrix}
(xz)^2+(yt)^2=(ab)^2 \\ 
(xt)^2+(yz)^2=(ac)^2 \\ 
(xy)^2+(zt)^2=(bc)^2 
\end{matrix}$$ Проверить это можно прямой подстановкой решений системы $(1)$. Тройка пифагоровых треугольников равной площади, об этом тоже было https://dxdy.ru/post1189279.html#p1189279. Такие тройки существуют, хотя общего решения нет (scwec сказал, я ему верю), но в нашем случае имеется дополнительное требование: произведение трех гипотенуз должно быть равно целому квадрату. Это и достаточное условие, поскольку тройка $a,b,c$ в этом случае определена, и доказательство невыполнимости последнего требования стало бы доказательством неразрешимости кубоида. Поясню.
Перебираем значения целочисленной ф-ии $\dfrac{nm(n^2-m^2)}{2}$ (легче бывает только от одной переменной), сортируем по величине и находим тройное совпадение в двумерном массиве. Это значит, что существует три пифагоровых треугольника с катетами $p=2nm,q=n^2-m^2$ и гипотенузами $r=n^2+m^2.$ Проверяем далее не является ли целым числом $s=\sqrt{r_1r_2r_3}.$ Если нет, перебираем дальше. Если найдено целое $s$, фиксируем величины $\dfrac{s}{r_1},\dfrac{s}{r_2},\dfrac{s}{r_3}$. Это могут быть не обязательно целые числа, но домножая на общий знаменатель, получаем вз. простую тройку целых $a,b,c$ и четверку $x,y,z,t$ по формулам решений системы $(1)$. В случае нечетных $a,b,c$ домножаем еще всё на $2$. Хотя нет. Стоп. Тут серьезное противоречие по $\mod 4$, тройка $a,b,c$ не может быть нечетной. Но гипотенузы примитивных троек нечетны. Более того, одно из $a,b,c$ должно быть кратно четырем, остальные нечетные. Значит одна из переменных должна быть домножена на 4, но какая? Нет ли противоречия в таком произвольном домножении? Что ж, все последние предложения опять оборачиваются гипотезой. Или же искомым противоречием, как повезет.

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение07.03.2020, 05:23 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
PS Впрочем, домножать на $4$ нужно так, чтобы выполнялось $a^2+b^2>c^2,b^2+c^2>a^2,c^2+a^2>b^2$, видимо наименьшее из нечетных. Если оно вообще бывает.

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение07.03.2020, 05:43 


21/05/16
4292
Аделаида
Сообщение с длинами сторон треугольника Герона.
Тема с попыткой опровержения сущствования кубоида через "несуществование" треугольника Герона.

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение07.03.2020, 06:32 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
kotenok gav
Ну да, ничто не ново под луной. Хотя о втором следствии упоминаний нет, а оно из того же места растет и более сильное.
kotenok gav в сообщении #1330840 писал(а):
Проверил: из второго тр-ка кубоидов не выходит :-(

Кубоидов не из каких не выходит, понятно, а второй треугольник просто не Геронов. Площадь у него иррациональная, видимо ошибка. Первый в порядке, и значит да, через это ничего не доказать.

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение07.03.2020, 07:12 


21/05/16
4292
Аделаида
Второй треугольник - это я имел в виду этот:
grizzly в сообщении #1330364 писал(а):
[ a, b, c, area ] = $[11789^2 , 68104^2 , 68595^2 , 284239560530875680]$

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение07.03.2020, 12:04 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
Да, этот. С ним тоже всё в порядке, засыпал уже вчера. Но это неважно, искать кубоид таким способом по трем переменным вещь несуразная. Даже если в запасе 300 лет имеется, всё равно скучновато ждать )

 Профиль  
                  
 
 Re: Совершенный кубоид
Сообщение09.03.2020, 03:48 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
Еще несколько соображений (вопрос с пифагоровыми тройками пока открыт). Предположим, он всё-таки существует. Кубоид. Тогда существует геронов треугольник со сторонами $a^2,b^2,c^2$ пропорциональными квадратам диагоналей, у которого все скобочки под радикалом удвоенные квадраты. Решение треугольника Герона известно. Попробуем привести термины в соответствие:

$1$) $a^2=N(M^2+k^2)$

$2$) $b^2=M(N^2+k^2)$

$3$) $c^2=(M+N)(MN-k^2)$

$4$) $S=MN(M+N)=\dfrac{a^2+b^2+c^2}{2}=x^2$ (полупериметр)

$5$) $S-a^2=N(MN-k^2)=\dfrac{b^2+c^2-a^2}{2}=y^2$

$6$) $S-b^2=M(MN-k^2)=\dfrac{c^2+a^2-b^2}{2}=t^2$

$7$) $S-c^2=(M+N)k^2=\dfrac{a^2+b^2-c^2}{2}=z^2$

Вычленим из последнего пункта равенство $(M+N)k^2=z^2$. Видно что $k \mid z$, значит существует целое $l$ такое, что $M+N=\left ( \dfrac{z}{k} \right )^2=l^2.$
Из пункта 3) также видно $MN-k^2=\dfrac{c^2}{M+N}=\left ( \dfrac{c}{l} \right )^2=v^2.$ И далее
из пункта 5) $\Rightarrow N=\dfrac{y^2}{MN-k^2}=\left ( \dfrac{y}{v} \right )^2=n^2,$
из пункта 6) $\Rightarrow M=\dfrac{t^2}{MN-k^2}=\left ( \dfrac{t}{v} \right )^2=m^2,$
из пункта 1) $\Rightarrow M^2+k^2=\dfrac{a^2}{N}=m^4+k^2=\left ( \dfrac{a}{n} \right )^2=p^2,$
из пункта 2) $\Rightarrow N^2+k^2=\dfrac{b^2}{M}=n^4+k^2=\left ( \dfrac{b}{m} \right )^2=q^2.$

Таким образом, все Героновы переменные и выражения в скобках есть целые квадраты за исключением $k$. Если бы оно тоже захотело стать квадратом, то и площадь треугольника $MNk(M+N)(MN-k^2)$ следом, но такое квадратное счастье оказалось бы невозможно: $m^4+k^4=p^2,n^4+k^4=q^2.$

Подытожим: $\begin{matrix}
a=pn\\ 
b=qm\\ 
c=vl
\end{matrix}\ \ \  \begin{matrix}
x=lmn\\ 
y=vn\\ 
t=vm\\ 
z=kl
\end{matrix} $ Задача обернулась системой из четырех пифагоровых троек $\left\{\begin{matrix}
m^2+n^2=l^2\\ 
m^2n^2=k^2+v^2\\ 
m^4+k^2=p^2\\ 
n^4+k^2=q^2
\end{matrix}\right.$, первую из которых можно считать примитивной.

kotenok gav, вот Вам пример алгоритма с перебором по двум переменным. Генерируем в нужном порядке примитивные пифагоровы тройки $m^2+n^2=l^2.$ Среди делителей $mn$ с большой вероятностью оказывается хотя бы одно простое вида $4K+1$, тогда легко вычисляется пара $u_1^2+u_2^2=m^2n^2.$ Пример: $21^2+20^2=29^2;\ 21^2 \cdot 20^2=252^2+336^2.$ Осталось проверить, не являются ли целыми числа $\sqrt{m^4+u^2},\ \sqrt{n^4+u^2}$. Если да, немедленно переименовываем такое $u$ в $k$, оставшееся — в $v$, и можно звать журналистов, хотя они не очень падки на хорошие новости. На всякий случай: $y=vn,t=vm,z=kl$ — ребра искомого кубоида.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 153 ]  На страницу 1, 2, 3, 4, 5 ... 11  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group