2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1, 2, 3, 4, 5, 6 ... 15  След.
 
 Re: Парадокс обмена
Сообщение29.10.2019, 13:43 
Аватара пользователя


22/07/08
1416
Предместья
Mikhail_K в сообщении #1422878 писал(а):
А есть ли у Вас хотя бы что-то похожее, кроме общих слов, что приводило бы к рассмотрению среднего геометрического?

Ничего нет.
Более того, я сразу сказал, что рассматривать среднее геометрическое - это не правильно.
Хотя и приводит к правильному выводу: от обмена конвертами средний результат не меняется.

 Профиль  
                  
 
 Re: Парадокс обмена
Сообщение29.10.2019, 13:58 
Заслуженный участник
Аватара пользователя


26/01/14
4898
Лукомор в сообщении #1422881 писал(а):
Хотя и приводит к правильному выводу: от обмена конвертами средний результат не меняется.
Так это неправильный вывод.
Если про распределение сумм вообще ничего не известно, то вопрос некорректен, и правильного ответа на него нет.
Если распределение известно, то это зависит от $x$, улучшает ли средний результат обмен конвертами. При одних $x$ улучшает, при других $x$ ухудшает.

 Профиль  
                  
 
 Re: Парадокс обмена
Сообщение29.10.2019, 14:24 
Аватара пользователя


22/07/08
1416
Предместья
Mikhail_K в сообщении #1422878 писал(а):
В нахождении среднего геометрического нет смысла.

А можете прокомментировать вот это утверждение
из (извиняюсь!) Википедии (статья "Среднее Колмогорова"):
Цитата:
В соответствии с теорией измерений, для усреднения данных, измеренных в шкале интервалов, из всех средних Колмогорова можно использовать только среднее арифметическое, а для усреднения данных, измеренных в шкале отношений, из всех средних Колмогорова можно использовать только степенные средние и среднее геометрическое.

В два раза больше, и в два раза меньше - это ведь шкала отношений или нет?

-- Вт окт 29, 2019 13:29:51 --

Mikhail_K в сообщении #1422885 писал(а):
При одних $x$ улучшает, при других $x$ ухудшает.

Да.
При одних - улучшает, при других - ухудшает.
В среднем - не улучшает и не ухудшает.

 Профиль  
                  
 
 Re: Парадокс обмена
Сообщение29.10.2019, 14:47 
Заслуженный участник
Аватара пользователя


16/07/14
9319
Цюрих

(Оффтоп)

Евгений Машеров в сообщении #1422839 писал(а):
Решающее правило сведётся к "Если в конверте меньше определённой величины, то меняй, если нет - то нет".
Далеко не для всех распределений.

 Профиль  
                  
 
 Re: Парадокс обмена
Сообщение29.10.2019, 15:09 
Заслуженный участник
Аватара пользователя


26/01/14
4898
Лукомор в сообщении #1422887 писал(а):
А можете прокомментировать вот это утверждение
из (извиняюсь!) Википедии (статья "Среднее Колмогорова"):
Но деньги-то в конвертах (то самое $x$) измеряются не в "разах", а в рублях. То как они между собой соотносятся - другой разговор.
Лукомор в сообщении #1422887 писал(а):
В среднем - не улучшает и не ухудшает.
Попытайтесь придать строгий смысл этому утверждению, чтобы можно было его комментировать.
Замечу, что среднее геометрическое между $x/2$ и $2x$ Вы находите не "в среднем", а для каждого конкретного $x$. Какой, по-Вашему, имеет смысл это среднее геометрическое для конкретного, фиксированного значения $x$?

 Профиль  
                  
 
 Re: Парадокс обмена
Сообщение29.10.2019, 16:13 
Аватара пользователя


22/07/08
1416
Предместья
Mikhail_K в сообщении #1422894 писал(а):
Но деньги-то в конвертах (то самое $x$) измеряются не в "разах", а в рублях. То как они между собой соотносятся - другой разговор.

Деньги измеряются в рублях.
Но отношение количества денег в одном конверте к количеству денег в другом конверте
есть величина постоянная, не меняющаяся от одного расклада к другому.
Это задано условием.
Количество денег в конверте, величина переменная, и если в одном раскладе $100$ рублей - это большая из двух сумм, то в следующем раскладе $ 500$ рублей может оказаться меньшей из двух сумм.
Когда мы говорим что открытые в первом конверте $x$ рублей могут быть большей или меньшей суммой,
мы не должны забывать, что меньшей суммой она будет в раскладе
$ \left\lbrace x; 2x  \right\rbrace$, а большей - в раскладе $\left\lbrace x/2; x \right\rbrace$.
Для двух раскладов возможны всего четыре варианта выбора первого конверта и обмена его на второй:

$x/2 \to x$

$x    \to x/2$

$x   \to 2x $

$2x  \to x$

Суммируя, находим что до обмена эти четыре варианта дают $9x/2$, после обмена $9x/2$.
Мы же формулой "два раза плюс пол раза пополам" выбираем из четырех вариантов два более выгодных,
и теряем два менее выгодных, за счет чего получаем мнимый "выигрыш".

 Профиль  
                  
 
 Re: Парадокс обмена
Сообщение29.10.2019, 16:23 
Аватара пользователя


22/07/08
1416
Предместья
Mikhail_K в сообщении #1422894 писал(а):
Какой, по-Вашему, имеет смысл это среднее геометрическое для конкретного, фиксированного значения $x$?

Никакого. Я же, еще не произнеся слова "среднее геометрическое", сразу предупредил, что это будет не правильно!

 Профиль  
                  
 
 Re: Парадокс обмена
Сообщение29.10.2019, 22:18 
Аватара пользователя


22/07/08
1416
Предместья
Интересно, что обмен "выгоден" только в том случае, когда вскрываем конверт, смотрим, сколько в нем денег,
приходим к выводу, что в случае обмена получим в среднем $5x/4$ и после этого меняемся.
Если сделать наоборот, выбрать конверт, подержать его в руках, не вскрывая, и поменять его на второй,
а затем вскрыть этот второй, полученный в результате обмена конверт,
то можно убедиться, что такой обмен не выгоден.
Поскольку в конверте мы найдем $y$ рублей, а это значит, что в конверте,
который мы выбрали сперва, и отдали при обмене,
было либо $2y$, либо $y/2$ рублей, то-есть, в среднем, $5y/4$.
На каждом таком обмене мы теряем в среднем 20%, причем, если конвертами меняются между собой два игрока,
то теряют, в среднем, по 20% оба. :D

Тут главное, что при любом способе обмена вскрывать можно только один конверт.
В случае двух игроков, в каждом туре вскрывает конверт только один из двух игроков, а второй складывает себе не вскрытые конверты.
Если вскрывать оба конверта, то каждый из двух игроков получит в среднем $S/2$ рублей, где $S$ общая сумма разыгранных во всех раскладах денег, и никакого выигрыша не получится.

Последнее замечание относится только к двум чистым стратегиям:
либо менять конверты всегда, либо никогда не менять.

-- Вт окт 29, 2019 21:40:30 --

Mikhail_K в сообщении #1422894 писал(а):
Какой, по-Вашему, имеет смысл это среднее геометрическое для конкретного, фиксированного значения $x$?

Для любого расклада условием задано отношение:

$\frac{x}{x_1} = \frac{x_2}{x}$ ,

где $x$ - количество денег в одном из конвертов,
$x_1$ и $x_2$ - возможные значения количества денег в другом конверте.
Из этой пропорции получаем:
$x^2 = x_1\cdot x_2$ или

$x = \sqrt{x_1\cdot x_2}$

 Профиль  
                  
 
 Re: Парадокс обмена
Сообщение30.10.2019, 14:03 
Заслуженный участник
Аватара пользователя


28/09/06
11062
sergey zhukov в сообщении #1422517 писал(а):
Я вижу только такое объяснение: такая логика предполагает, что общая разыгрываемая сумма - это случайная величина, равномерно распределенная на бесконечном интервале.
Нет. На самом деле такая логика предполагает, что события "у противника вдвое больше" и "у противника вдвое меньше" равновероятны при условии, что у меня $x$. А вот почему это предположение неверно при любом распределении $x$, это уже второй вопрос к топикстартеру.

 Профиль  
                  
 
 Re: Парадокс обмена
Сообщение30.10.2019, 14:28 
Аватара пользователя


11/12/16
14278
уездный город Н
epros в сообщении #1422993 писал(а):
Нет. На самом деле такая логика предполагает, что события "у противника вдвое больше" и "у противника вдвое меньше" равновероятны при условии, что у меня $x$. А вот почему это предположение неверно при любом распределении $x$, это уже второй вопрос к топикстартеру.


Почему же неверно?
Суммы в конвертах величины зависимые.
Если нет ограничений на минимальную и максимальную сумму во втором конверте, то работает такая процедура:

1. Выбираем сумму в первом конверте $x$. Для её генерации можно использовать любое распределение.
2. Бросаем честную монетку, если орел удваиваем, если решка уполовиниваем $x$, получившуюся сумму кладем во второй конверт.
3. Игроку отдаем первый конверт.
4. Обменивать или не обменивать решает игрок.

Тогда для игрока
а) "события "у противника вдвое больше" и "у противника вдвое меньше" равновероятны при условии, что у меня $x$"
б) и это верно при любом распределении $x$
в) надо меняться.
UPD: г) рассуждения, приведенные в стартовом посте верны. Но их в праве делать только игрок, а не ведущий!

Модифицируем процедуру для двух игроков.
..
3. Перетусуем конверты (опять с помощью честной монетки) и раздадим их игрокам.

Тогда:
а. Вероятность что у первого игрока в два раза больше чем у второго - ровно половина. И наоборот. Вроде бы также, как и в первом варианте.
б. Опять же, как и в первом варианте, распределение $x$ может быть любым.
в. Однако, рассуждения, приведенные в стартовом посте, оказываются неверными для обоих игроков.

Вывод: знания, что в одном конверте в два раза больше, чем в другом, и даже знания, что события "у противника вдвое больше" и "у противника вдвое меньше" равновероятны, не хватает, чтобы принять решение: нужно меняться, не нужно, или всё равно. Нужны уточнения по процедуре подготовки конвертов.

 Профиль  
                  
 
 Re: Парадокс обмена
Сообщение30.10.2019, 15:10 
Заслуженный участник
Аватара пользователя


16/07/14
9319
Цюрих
EUgeneUS в сообщении #1422998 писал(а):
Тогда для игрока
а) "события "у противника вдвое больше" и "у противника вдвое меньше" равновероятны при условии, что у меня $x$"
б) и это верно при любом распределении $x$
Неправда. Для примера возьмите распределение $x \equiv 1$ и посчитайте вероятности.

 Профиль  
                  
 
 Re: Парадокс обмена
Сообщение30.10.2019, 15:41 
Аватара пользователя


11/12/16
14278
уездный город Н
mihaild в сообщении #1423007 писал(а):
Неправда. Для примера возьмите распределение $x \equiv 1$ и посчитайте вероятности.


"50 на 50", монетка же честная.
В данном варианте процедуры $x$ - это сумма "в моем (в первом) конверте".

 Профиль  
                  
 
 Re: Парадокс обмена
Сообщение30.10.2019, 16:15 
Аватара пользователя


22/07/08
1416
Предместья
EUgeneUS в сообщении #1422998 писал(а):
Тогда для игрока
а) "события "у противника вдвое больше" и "у противника вдвое меньше" равновероятны при условии, что у меня $x$"
б) и это верно при любом распределении $x$
в) надо меняться.

Надо меняться это при условии что игрок вскрыл конверт до обмена.
Если игрок поменял конверт "в тёмную", то, вскрыв второй конверт, он ровно также придет к выводу,
что меняться было не надо.
Потому что найдя во втором конверте $y$ рублей он сразу сообразит,
что в первом конверте, который он отдал не глядя, могло быть $2y$ или $y/2$, в среднем $5y/4$ рублей.
То-есть, до обмена ясно, что меняться выгодно, а после обмена ясно, что меняться было не выгодно.

 Профиль  
                  
 
 Re: Парадокс обмена
Сообщение30.10.2019, 17:53 
Аватара пользователя


11/12/16
14278
уездный город Н
Лукомор в сообщении #1423031 писал(а):
Надо меняться это при условии что игрок вскрыл конверт до обмена


Нет. В первой процедуре (в моем посте) игрок должен меняться, не вскрывая конверты. При этом распределение $x$ никакой роли не играет.

Если до обмена игрок вскрывает конверт, то должен он меняться или нет, зависит от той суммы, которую он нашел, и какие предположения он может делать относительно распределения $x$.

 Профиль  
                  
 
 Re: Парадокс обмена
Сообщение30.10.2019, 17:59 
Аватара пользователя


22/07/08
1416
Предместья
EUgeneUS в сообщении #1423042 писал(а):
В первой процедуре (в моем посте) игрок должен меняться, не вскрывая конверты. При этом распределение $x$ никакой роли не играет.

Если не вскрывать, то то же самое.
Взял конверт - меняться выгодно.
Поменялся - меняться было не выгодно.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 214 ]  На страницу Пред.  1, 2, 3, 4, 5, 6 ... 15  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: B@R5uk


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group