Ну а разве можно по другому?
Вложение:
456317d3eda6~2.jpg
Разумеется, у вас появятся другие синус и косинус. Ну по крайней мере они возникнут в процессе решения задачи, а не как попытка усложнить себе работу.
Рисунок не совсем правильный. Во первых - по условию задачи угол между направлениями скоростей второй шайбы - 90 град. Тогда углы, которые обозначены как

и

равны 45град., т.е.

. Но главное то, что угол между направлением скорости первой шайбы и прочерченной линией "зеркала" не равен 90 град. Эту интересную задачку решил)). Например, угол между выбранным направлением оси Х и вектором скорости первой шайбы оказался 18,4 град., а не 45 как из рисунка. Для решения задачи следует составить три уравнения: два уравнения выражения закона сохранения импульса в проекциях на оси Х и Y, и одно - закона сохранения энергии. У меня получился такой результат:

Угол между направлением скорости первой шайбы и осью Х:

Скорость первой шайбы после удара:

Где

- скорость второй шайбы до удара.