2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Ответить на тему На страницу Пред.  1 ... 13, 14, 15, 16, 17, 18, 19, 20  След.
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение19.03.2019, 15:32 


08/12/17
116
Цитата:
А миллиард в степени миллиард примеров рассмотреть не хотите?

Хочу .
Только приведите, хотя бы, один, который опровергает мое доказательство.

 Профиль  
                  
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение19.03.2019, 21:16 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
ydgin в сообщении #1382896 писал(а):
Хочу .
Ну так рассматривайте. Вдруг какой-нибудь опровергнет ваше "доказательство".

 Профиль  
                  
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение19.03.2019, 21:59 


08/12/17
116
Что рассматривать?
Я считаю,что таких примеров (опровергающих мое доказательство) нет.
Если Вы, считаете обратное, приведите хоть один конкретный пример .

 Профиль  
                  
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение19.03.2019, 22:10 


20/03/14
12041
ydgin в сообщении #1382979 писал(а):
Я считаю,что таких примеров (опровергающих мое доказательство) нет.
Если Вы, считаете обратное, приведите хоть один конкретный пример .

Ваше доказательство равносильно приведенным двум строкам. И настолько же обоснованно.
Почему бы не обойтись процитированным? оно короче.

 Профиль  
                  
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение20.03.2019, 09:33 
Аватара пользователя


15/09/13
390
г. Ставрополь
Позволю себе предположить.
ТС, зная, что в равенство $x^n+y^n=z^n$ и $n>1$ «сгенерировать» невозможно никаких иных натуральных решений $x,y,z$, кроме таких (и таким же способом), как для $n=2$ (это еще Уайлс косвенно обосновал), разумно считает, что ошибки в его доказательстве нет и быть не может, возможны только опечатки.

$x^2+y^2=z^2$, только если $x^3+y^3<z^3$

 Профиль  
                  
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение20.03.2019, 21:38 


21/11/10
546
ydgin в сообщении #1382683 писал(а):
Генерация решений для уравнения $x^3+y^3=z^3$


ydgin
Вы, неудачно на мой взгляд, называете условия целостности для пифагоровых троек генерацией решений и наверное в "физическом" смысле этот так. Действительно уравнение эквивалентное уравнению Пифагора или ВТФ2)) выглядит как: $(x+y-z)^2= 2(z-x)(z-y)$ и имеет красивый геометрический смысл, который проявляется в разбиении квадрата Z вложенными в него двумя квадратами X и Y с областью перекрытия квадратом со стороной $ x+y-z$.
Условия целостности записанные для ДВУХ взаимно простых, линейных алгебраических сомножителей и числа два: $2(z-x)(z-y)$ дающих в произведении квадрат $(x+y-z)^2 $полностью все определяют, имеют ТРИ уравнения и ТРИ переменных и этого вполне достаточно для получения всех пифагоровых троек.
Далее, уравнение эквивалентное ВТФ3: $(x+y-z)^3=3(z-x)(z-y)(x+y)$ имеет тот же геометрический смысл и условия целостности записываются для ТРЕХ ,но не ДВУХ линейных взаимно простых алгебраических сомножителей чисел и числа 9
1.$x+y-z=3pqt$
2$.z-x=9p^3$
3$.z-y=q^3$
4.$x+y=t^3$
И система условий целостности записанная по аналогии с по аналогии с ВТФ2)) содержит ЧЕТЫРЕ уравнения и ТРИ переменных.
Конечно мы можем поиграться, объединяя в системе два уравнения из четырёх - в три, путем перемножения произвольных двух из них.
С таким же успехом можно взять и перемножить левые и правые части первого и второго условия целостности,
$(x+y-z)(z-x)=27p^4qt$, и, вспоминая старую добрую теорему Виета, записать сумму $(x+y-z)+(z-x)=y=3pqt+9p^3$, а дальше решать соответствующее квадратное уравнение. Таких квадратных уравнений существенно больше, вроде штук шесть.
И придётся все их рассматривать совместно, а у Вас пока только одно квадратное уравнение, которое генерацией решений, как в случае ВТФ2, называть не стоит.

 Профиль  
                  
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение21.03.2019, 10:12 


08/12/17
116
ishhan
$(x+y)=((z-y)+(z-x)+2(x+y-z))$
Третий множитель не нужен.

vxv
Цитата:
разумно считает, что ошибки в его доказательстве нет и быть не может,

Спасибо за понимание.

Lia
доказательство равносильно приведенным двум строкам.
$(z-y)=u^3, 3(z-x)((z-y)+(z-x)+2(x+y-z))=v^3$- можно предположить, что есть целое примитивное решение.
$k(z-y)=ku^3,k 3(z-x)((z-y)+(z-x)+2(x+y-z))=kv^3$ - целые не примитивные решения не существуют.

 Профиль  
                  
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение21.03.2019, 13:44 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
ydgin в сообщении #1383282 писал(а):
$k(z-y)=ku^3,k 3(z-x)((z-y)+(z-x)+2(x+y-z))=kv^3$ - целые не примитивные решения не существуют.
Для непримитивных решений формулы Абеля не работают. Для их вывода очень существенно, что числа $x,y,z$ взаимно простые.

 Профиль  
                  
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение21.03.2019, 14:43 


08/12/17
116
Для квадратов все работает.

 Профиль  
                  
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение21.03.2019, 16:15 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
ydgin в сообщении #1383331 писал(а):
Для квадратов все работает.

Формулы Абеля для второй степени: если для взаимно простых натуральных $x$, $y$, $z$ выполняется равенство $x^2+y^2=z^2$, и число $y$ чётное, то существуют такие натуральные числа $a$, $A$, $b$, $B$, что выполняются равенства $$\begin{cases}z-y=a^2,\\ z+y=A^2,\end{cases}\qquad\begin{cases}z-x=\frac{b^2}2,\\ z+x=2B^2.\end{cases}$$ Например, для тройки $x=55$, $y=48$, $z=73$ будет $a=5$, $A=11$, $b=6$, $B=8$.
Теперь умножьте эту тройку на $k=7$ и продемонстрируйте натуральные числа $a$, $A$, $b$, $B$.

 Профиль  
                  
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение07.04.2019, 14:58 


08/12/17
116
Someone

Формула Евклида является основным средством построения пифагоровых троек.
Несмотря на то, что формула Евклида генерирует все примитивные тройки, она не порождает все тройки. При добавлении дополнительного параметра ${\displaystyle k} $ получается формула, порождающая все пифагоровы треугольники единственным образом.
$x=m^2-n^2, y=2mn, z=m^2+n^2.$-$ (x,y,z)$ примитивное решение.
$x=k(m^2-n^2), y=k(2mn), z=k(m^2+n^2).$-$(x,y,z)$ не примитивное решение.
из статьи "Пифагорова тройка" в Википедии.

Someone в сообщении #1383348 писал(а):
Формулы Абеля для второй степени: если для взаимно простых натуральных $x$, $y$, $z$ выполняется равенство $x^2+y^2=z^2$, и число $y$ чётное, то существуют такие натуральные числа $a$, $A$, $b$, $B$, что выполняются равенства $$\begin{cases}z-y=a^2,\\ z+y=A^2,\end{cases}\qquad\begin{cases}z-x=\frac{b^2}2,\\ z+x=2B^2.\end{cases}$$




Для удобства перепишем:
$x=m^2-n^2, y=2mn, z=m^2+n^2.$
$kx=k(m^2-n^2), ky=k(2mn), kz=k(m^2+n^2).$
$(x,y,z)$- примитивное решение,
$m,n$-взаимно простые.

Нам нужно :
$x=(z-y)+(x+y-z)$
$y=(z-x)+(x+y-z)$
$z=(z-y)+(z-x)+(x+y-z)$

Получаем

$(z-x)=m^2+n^2-m^2+n^2=2n^2=\frac{1}{2}b^2$
$(z-y)=m^2+n^2-2mn=(m-n)^2=a^2$
$(x+y-z)=m^2-n^2+2mn-m^2-n^2=2mn-2n^2=2n(m-n)=ab$

$x=a^2+ab=m^2-n^2$
$y=\frac{1}{2}b^2+ab=2mn$
$z=a^2+\frac{1}{2}b^2+ab=m^2+n^2$


Если понадобилось
$(z+x)=m^2+n^2+m^2-n^2=2m^2=a^2+\frac{1}{2}b^2+ab+a^2+ab =2(\frac{1}{2}b+a)^2$
$(z+y)=m^2+n^2+2mn=(m+n)^2=a^2+\frac{1}{2}b^2+ab+\frac{1}{2}b^2+ab=(a+b)^2$

Это для примитивных решений.

Для не примитивных решений.

$kx=k(a^2+ab)=k(m^2-n^2)$
$ky=k(\frac{1}{2}b^2+ab)=k(2mn)$
$kz=k(a^2+\frac{1}{2}b^2+ab)=k(m^2+n^2)$

$kx=(\sqrt{k}a)^2+\sqrt{k}a\sqrt{k}b=(\sqrt{k}m)^2-(\sqrt{k}n)^2$
$ky=\frac{1}{2}(\sqrt{k}b)^2+\sqrt{k}a\sqrt{k}b=2\sqrt{k}m\sqrt{k}n$
$kz=(\sqrt{k}a)^2+\frac{1}{2}(\sqrt{k}b)^2+\sqrt{k}a\sqrt{k}b=(\sqrt{k}m)^2+(\sqrt{k}n)^2$

Для примитивных решений целые $m,n$.
Для не примитивных решений целые $ (\sqrt{k}m)^2,(\sqrt{k}n)^2$

При $s=2$ все нормально.
При $s>2$ приходим к тем же двум строкам.
$(x_2+y_2-z_2)=(x_s+y_s-z_s)=uv$- можно предположить,что есть
примитивное решение.
$k(x_2+y_2-z_2)=k(x_s+y_s-z_s)=kuv$-нет целых не примитивных решений т.к.
$kuv=\sqrt[s]{k}u\sqrt[s]{k^{s-1}}v$ индивидуально для каждой степени и
$kuv=\sqrt{k}u\sqrt{k}v$ подходит только для квадратов.

 Профиль  
                  
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение07.04.2019, 18:07 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
ydgin в сообщении #1386460 писал(а):
Формула Евклида является основным средством построения пифагоровых троек.
Несмотря на то, что формула Евклида генерирует все примитивные тройки, она не порождает все тройки. При добавлении дополнительного параметра ${\displaystyle k} $ получается формула, порождающая все пифагоровы треугольники единственным образом.
$x=m^2-n^2, y=2mn, z=m^2+n^2.$-$ (x,y,z)$ примитивное решение.
$x=k(m^2-n^2), y=k(2mn), z=k(m^2+n^2).$-$(x,y,z)$ не примитивное решение.
из статьи "Пифагорова тройка" в Википедии.
Точно так же для любой степени: если $x,y,z$ — примитивная тройка, и $k>1$, то $kx,ky,kz$ — не примитивная.

ydgin в сообщении #1386460 писал(а):
При $s>2$ приходим к тем же двум строкам.
$(x_2+y_2-z_2)=(x_s+y_s-z_s)=uv$- можно предположить,что есть
примитивное решение.
$k(x_2+y_2-z_2)=k(x_s+y_s-z_s)=kuv$-нет целых не примитивных решений т.к.
$kuv=\sqrt[s]{k}u\sqrt[s]{k^{s-1}}v$ индивидуально для каждой степени и
$kuv=\sqrt{k}u\sqrt{k}v$ подходит только для квадратов.
Долго думали и решили повторить старые глупости. Доказательства того, что непримитивных решений нет, у Вас нет. Мало ли, что для третьей степени не получаются точно такие же формулы, как для второй. Отсюда ничего не следует, так как могут быть какие-нибудь другие формулы.

Ещё раз: для непримитивных троек формулы Абеля не работают. В том числе и для второй степени.
Someone в сообщении #1383348 писал(а):
Формулы Абеля для второй степени: если для взаимно простых натуральных $x$, $y$, $z$ выполняется равенство $x^2+y^2=z^2$, и число $y$ чётное, то существуют такие натуральные числа $a$, $A$, $b$, $B$, что выполняются равенства $$\begin{cases}z-y=a^2,\\ z+y=A^2,\end{cases}\qquad\begin{cases}z-x=\frac{b^2}2,\\ z+x=2B^2.\end{cases}$$ Например, для тройки $x=55$, $y=48$, $z=73$ будет $a=5$, $A=11$, $b=6$, $B=8$.
Теперь умножьте эту тройку на $k=7$ и продемонстрируйте натуральные числа $a$, $A$, $b$, $B$.
Я жду натуральных $a$, $A$, $b$, $B$. То, что Вы там навтыкали каких-то иррациональных выражений, меня не устраивает, так как все числа должны быть целыми.

 Профиль  
                  
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение08.04.2019, 18:28 


08/12/17
116
Someone в сообщении #1383348 писал(а):
Например, для тройки $x=55$, $y=48$, $z=73$ будет $a=5$, $A=11$, $b=6$, $B=8$.
Теперь умножьте эту тройку на $k=7$ и продемонстрируйте натуральные числа $a$, $A$, $b$, $B$.

Someone в сообщении #1386482 писал(а):
Я жду натуральных $a$, $A$, $b$, $B$. То, что Вы там навтыкали каких-то иррациональных выражений, меня не устраивает, так как все числа должны быть целыми.

Someone в сообщении #1386482 писал(а):
Долго думали и решили повторить старые глупости.

Не знал,что это проблема.
$7x=7\cdot55$, $7y=7\cdot48$, $7z=7\cdot73$ , $\sqrt{7}a=\sqrt{7}\cdot5$, $\sqrt{7}A=\sqrt{7}\cdot11$, $\sqrt{7} b=\sqrt{7}\cdot6$, $\sqrt{7}B=\sqrt{7}\cdot8$.

 Профиль  
                  
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение08.04.2019, 20:27 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
ydgin в сообщении #1386643 писал(а):
$\sqrt{7}a=\sqrt{7}\cdot5$, $\sqrt{7}A=\sqrt{7}\cdot11$, $\sqrt{7} b=\sqrt{7}\cdot6$, $\sqrt{7}B=\sqrt{7}\cdot8$.
Чушь. В формулах Абеля все числа целые, а у Вас — не целые. То, что Вы написали, никакого отношения к формулам Абеля не имеет.

 Профиль  
                  
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение09.04.2019, 09:23 


08/12/17
116
$x=m^2-n^2, y=2mn, z=m^2+n^2.$
$kx=k(m^2-n^2), ky=k(2mn), kz=k(m^2+n^2).$

$kx=(\sqrt{k}m)^2-(\sqrt{k}n)^2$
$ky=2\sqrt{k}m\sqrt{k}n$
$kz=(\sqrt{k}m)^2+(\sqrt{k}n)^2$

Someone в сообщении #1386665 писал(а):
Чушь. В формулах Абеля все числа целые, а у Вас — не целые. То, что Вы написали, никакого отношения к формулам Абеля не имеет.


Это имеет прямое отношение к формулам Эвклида.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 299 ]  На страницу Пред.  1 ... 13, 14, 15, 16, 17, 18, 19, 20  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group