2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 15, 16, 17, 18, 19, 20  След.
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение23.04.2019, 22:47 
Аватара пользователя
ydgin в сообщении #1389009 писал(а):
$x^s+y^s=z^s$
По правилам форума, Вы обязаны ограничиться теоремой Ферма для третьей степени. Другие степени можно рассматривать только после доказательства теоремы для третьей степени.

ydgin в сообщении #1389009 писал(а):
при помощи $a,b$- любые числа.
Даже не целые?

ydgin в сообщении #1389009 писал(а):
$(x+y-z)^s=q(z-x)(z-y)M$
Что за $q$?

ydgin в сообщении #1389009 писал(а):
$(x+y-z)=ab$
$(x+y-z)^s=a^sb^s$
$a^sb^s=q(z-x)(z-y)M$
$a^s=(z-y),b^s=q(z-x)M$
Формулы выглядят высосанными из пальца, поскольку вывода нет. Предъявите вывод.
Если нужны формулы Абеля, можете считать их известными, но для их записи надо определиться, какое из чисел $x$, $y$, $z$ делится на $3$, так как первый случай теоремы Ферма для третьей степени имеет простое элементарное доказательство. Будем считать это известным.
Пусть, например, $y$ делится на $3$.

ydgin в сообщении #1389009 писал(а):
Делаем вывод: чтобы были целые решения для $s>2$,нужно выполнение равенств
$(a_2b_2)=(a_sb_s), a_2=a_s, b_2=b_s$,
Второе и третье равенства не следуют из первого. Что такое $a_2$ и $b_2$, не определено.

ydgin в сообщении #1389009 писал(а):
а это возможно только при взаимно простых $a,b$.
Нет доказательства.

ydgin в сообщении #1389009 писал(а):
Значит целых решений уравнения $x^s+y^s=z^s$ при $s>2$ не существует.
Из сказанного выше это утверждение не следует.

-- Вт апр 23, 2019 22:52:00 --

vasili в сообщении #1389020 писал(а):
Уважаемый ydgin! У Вас $x + y-z = a b$, где $z-y=a^s$, тогда очевидно $(a, b) = 1$.
Почему это "очевидно"?

 
 
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение24.04.2019, 23:59 
 !  vasili, повторное предупреждение за неправильное оформление формул, а теперь еще и дублирование сообщения из Карантина. Исправляйте сообщение, перемещенное в Карантин. Если тут появится третья копия сообщения с недоделками, вносить исправления придется после бана.

 
 
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение14.05.2019, 15:16 
Как мне кажется вопросы, которые возникают по этой теме, в основном, касаются нахождения целых примитивных решений.

ishhan в сообщении #1382886 писал(а):
Пусть $u=1$, попробуйте доказать , что для целого числа $v$ не существует целочисленных решений квадратного уравнения, которое Вы получили.

Lia в сообщении #1386773 писал(а):
Там числа целые. Иначе вообще все абсурдно.

vasili в сообщении #1389020 писал(а):
Уважаемый ydgin! У Вас $x + y-z = a b$, где $z-y=a^s$, тогда очевидно $(a, b) = 1$.

Someone в сообщении #1389070 писал(а):
Даже не целые?


Но я обращаю Ваше внимание совсем на другую проблему.

Не важно целые или нет $x,y,z$.
Важно есть у них общий множитель или нет.

Равенства для любых разных степеней (например $2,3$)

$$x_2^2+y_2^2=z_2^2$

$x_3^3+y_3^3=z_3^3$

$x_2+y_2-z_2=x_3+y_3-z_3$

возможны только ,если нет общего множителя,не зависимо целые или нет $x,y,z$.

А при $s=2$ для любого целого четного числа $(x+y-z)$
всегда существуют целые $x_2,y_2,z_2$ .

 
 
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение14.05.2019, 15:23 
Аватара пользователя
ydgin в сообщении #1392956 писал(а):
Не важно целые или нет $x,y,z$.
Важно есть у них общий множитель или нет.
Понятие общего делителя для нецелых чисел не определено.

 
 
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение26.05.2019, 14:01 
Someone в сообщении #1387321 писал(а):
Мне процитировать здесь все сообщения, начиная с post1383282.html#p1383282
, чтобы уличить Вас в обмане? Те, где Вы упоминаете и формулы Абеля, и формулы Евклида.

Someone в сообщении #1387274 писал(а):
Первоначально у нас речь шла о формулах Абеля. Потом Вы зачем-то приплели формулы для примитивных пифагоровых троек, а потом и для непримитивных. Теперь появились ещё какие-то формулы. Уводите обсуждение в сторону?

Someone в сообщении #1387274 писал(а):
Ну конечно, осталось только делать вид, что Вы "не понимаете". Если не понимаете, тщательно проштудируйте вывод формул, не пропуская словесных пояснений. Я не буду такие тривиальности разъяснять. Если Вы сами в этом разобраться не можете, то нечего браться за доказательство теорем, и вообще о математике лучше забыть.

Someone в сообщении #1386883 писал(а):
А по определению формул, к которым Вы всё хотите "подогнать" — обязаны быть целыми.

Someone в сообщении #1392958 писал(а):
Понятие общего делителя для нецелых чисел не определено.

binki в сообщении #1327943 писал(а):
Уважаемый ydgin ! Это известные формулы. С учетом уравнения Ферма
$n^2=(X_2+Y_2-Z_2)^2=2(Z_2-X_2)(Z_2-Y_2)$;
$n^3=(X_3+Y_3-Z_3)^3=3(Z_3-X_3)(Z_3-Y_3)(X_3+Y_3)$,

ydgin в сообщении #1387222 писал(а):
Нужны только эти формулы.
$x=(z-y)+(x+y-z)$
$y=(z-x)+(x+y-z)$
$z=(z-y)+(z-x)+(x+y-z)$

Они объединяются в одно выражение
$(x+y-z)^s=q(z-x)(z-y)M$


По этим формулам можно находить любые решения для любых степеней.
Единственное ограничение:
$x^s+y^s=z^s $
$s\ne1$,$(x+y-z)\ne0$

Поэтому, в дальнейшем, все решения будем искать исходя из одного числа
$(x+y-z)\ne0 $.

$(x+y-z)\ne0 $- любое число,$x,y,z$-любые.

Будем искать целые.
Если нужны целые $x,y,z$ то $(x+y-z), (z-y),(z-x) $- должны быть целые.

Возьмем
$(x+y-z)=1$
Из выражения
$1^s=q_s(z_s-y_s)(z_s-x_s)M_s$
выбираем
$(z_s-y_s)=1$
находим
$(z_s-x_s)$ из уравнения
$1=q_s(z_s-x_s)M_s$


$1^2=2(z_2-y_2)(z_2-x_2)$
$1^3=3(z_3-y_3)(z_3-x_3)((z_3-y_3)+(z_3-x_3)+2(x_3+y_3-z_3))$
$1^5=5(z_5-y_5)(z_5-x_5)M_5$
... и т.д.
При $s$-простое число ,$s=q$.


Найдем решения для $s=2$
$q_2=2$,$M_2=1$
$1^2=2(z_2-y_2)(z_2-x_2)$
$(z_2-y_2)=1$- целое,$(x_2+y_2-z_2)=1$- целое.
$1^2=2\cdot1\cdot(z_2-x_2)$
$(z_2-x_2)=\frac{1}{2}$.
Получили решения
$x=1+1,y=\frac{1}{2}+1,z=1+\frac{1}{2}+1$
Теперь домножим на $q_2=2$.
Получаем три варианта решений.

$(x_2+y_2-z_2)=2$,$(z_2-y_2)=2$,$(z_2-x_2)=1$
$x=4,y=3,z=5$

$(x_2+y_2-z_2)=2$,$(z_2-y_2)=4$,$(z_2-x_2)=\frac{1}{2}$
$x=6,y=\frac{5}{2},z=\frac{13}{2}$

$(x_2+y_2-z_2)=2$,$(z_2-y_2)=1$,$(z_2-x_2)=2$
$x=3,y=4,z=5$

Отбрасываем не целое решение.
Замечаем,$q_2=2$-единственный множитель,который не дает не примитивного решения.
Теперь можно брать любые простые множители в любом порядке и количестве и получать все возможные целые решения.
Приятель написал компьютерную программу,вводим любое четное число ,компьютер выдает для него все возможные
пифагоровы тройки.

Все тоже проделаем при $s=3$.

$(x_3+y_3-z_3)=1$
$1^3=3(z_3-y_3)(z_3-x_3)((z_3-y_3)+(z_3-x_3)+2(x_3+y_3-z_3))$

$(z_3-y_3)=1$

Из уравнения $3(z_3-x_3)^2+9(z_3-x_3)-1=0$ найдем $(z_3-x_3)$.

$(z_3-x_3)=\frac{1}{6}(\sqrt{93}-9)$
$(z_3-x_3)=\frac{1}{6}(-\sqrt{93}-9)$

$(\sqrt{93})$ бесполезно умножать на целые числа, чтобы получить целое число.
Делаем вывод целых решений для $s=3$ не существует.

 
 
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение26.05.2019, 17:35 
Аватара пользователя
ydgin в сообщении #1395400 писал(а):
Все тоже проделаем при $s=3$.

$(x_3+y_3-z_3)=1$
$1^3=3(z_3-y_3)(z_3-x_3)((z_3-y_3)+(z_3-x_3)+2(x_3+y_3-z_3))$

$(z_3-y_3)=1$
Ну, предположим, что Вы доказали, что не существует натуральных решений, удовлетворяющих двум неизвестно откуда взявшимся условиям $(x_3+y_3-z_3)=1$ и $(z_3-y_3)=1$. Почему нет решений, НЕ удовлетворяющих этим условиям?

 
 
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение27.05.2019, 11:45 
Someone в сообщении #1395449 писал(а):
$(x_3+y_3-z_3)=1$ и $(z_3-y_3)=1$. Почему нет решений, НЕ удовлетворяющих этим условиям?

ydgin в сообщении #1395400 писал(а):
Теперь можно брать любые простые множители в любом порядке и количестве и получать все возможные целые решения.

Нет решений, которые удовлетворяют этому условию.

 
 
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение27.05.2019, 12:07 
Аватара пользователя
ydgin в сообщении #1395609 писал(а):
Someone в сообщении #1395449 писал(а):
$(x_3+y_3-z_3)=1$ и $(z_3-y_3)=1$. Почему нет решений, НЕ удовлетворяющих этим условиям?

ydgin в сообщении #1395400 писал(а):
Теперь можно брать любые простые множители в любом порядке и количестве и получать все возможные целые решения.

Нет решений, которые удовлетворяют этому условию.
Что значит — "брать любые простые множители"? Что с ними делать? Почему при этом получатся "всевозможные" решения? Причём здесь отсутствие решений, удовлетворяющих дополнительным условиям, никак не следующим из исходного уравнения?

 
 
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение27.05.2019, 13:54 
Someone в сообщении #1395611 писал(а):
Причём здесь отсутствие решений, удовлетворяющих дополнительным условиям, никак не следующим из исходного уравнения?


Какие дополнительные условия? Какое исходное уравнения?

ydgin в сообщении #1389009 писал(а):
Нужны только эти формулы.
$x=(z-y)+(x+y-z)$
$y=(z-x)+(x+y-z)$
$z=(z-y)+(z-x)+(x+y-z)$

Они объединяются в одно выражение при $x^s+y^s=z^s$

$(x+y-z)^s=q(z-x)(z-y)M$

 
 
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение27.05.2019, 14:11 
Аватара пользователя
ydgin в сообщении #1395629 писал(а):
Какие дополнительные условия?
ydgin в сообщении #1395400 писал(а):
Возьмем
$(x+y-z)=1$
ydgin в сообщении #1395400 писал(а):
выбираем
$(z_s-y_s)=1$

 
 
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение27.05.2019, 16:23 
ydgin в сообщении #1382683 писал(а):
Теперь вместо того,чтобы брать целые $x,y$ и искать целое $z$,будем брать целые $(z-y),(x+y-z)$ и искать целое $(z-x)$
ydgin в сообщении #1395400 писал(а):
Возьмем
$(x+y-z)=1$
Из выражения
$1^s=q_s(z_s-y_s)(z_s-x_s)M_s$
выбираем
$(z_s-y_s)=1$
находим
$(z_s-x_s)$ из уравнения
$1=q_s(z_s-x_s)M_s$

 
 
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение27.05.2019, 22:23 
Аватара пользователя
ydgin, извините, но Вы мне надоели. Хочется Вам ерунду писать — пишите. Считайте, что Вы уже всё доказали, но не удивляйтесь, что потом никто из специалистов это не признает.

 
 
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение29.05.2019, 08:38 
Аватара пользователя
ydgin в сообщении #1395400 писал(а):
Все тоже проделаем при $s=3$.

ydgin
Если можно (для полноты восприятия), то же проделайте для $s=4$.

Чтобы доказать теорему, достаточно доказать ее для $s=4$ и всех простых нечетных значений $s$ , т.к. они образуют все остальные показатели степеней.

 
 
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение29.05.2019, 15:10 
ydgin в сообщении #1395400 писал(а):
$(x+y-z)\ne0 $- любое число,$x,y,z$-любые.

Не могут быть любыми $x,y,z$. Так как в этом случае ваше докво сводится в одну строчку - НЕТ РЕШЕНИЯ, ПОТОМУ ЧТО ЕГО НЕТ.
Действительно,
$$n^3=(x+y-z)^3=[x^3+y^3-z^3]+3(x+y)(z-x)(z-y)$$
И выражение $[x^3+y^3-z^3=0]$ только тогда, когда рациональные или иррациональные числа $x,y,z$ являются решением уравнения Ферма.
Если $x,y,z$ - любые числа, то $$(x+y-z)^3=[x^3+y^3-z^3\ne0]+3(x+y)(z-x)(z-y)$$ И все Ваши дальнейшие операции должны проводиться с учетом $[x^3+y^3-z^3\ne0]$. А это значит доказывается, что числа $x,y,z$ - ЗАВЕДОМО НЕ РЕШЕНИЕ НЕ ЯВЛЯЕТСЯ РЕШЕНИЕМ УРАВНЕНИЯ ФЕРМА.
Введение параметра $k$ ничего не меняет, так как выражение $[x^3+y^3-z^3\ne0]$ не меняется.
Для квадратов Ваши выводы тоже можно свести в одну строчку,- РЕШЕНИЯ ЕСТЬ, ПОТОМУ ЧТО ОНИ СУЩЕСТВУЮТ.
ydgin
Не торопитесь с ответом. У меня нет такой замечательной выдержки как у Someone.
Предугадывая Ваш ответ, отвечать не буду.

 
 
 
 Re: Простое доказательство теоремы ФЕРМА.
Сообщение29.05.2019, 20:27 
ydgin в сообщении #1395400 писал(а):
Единственное ограничение:
$x^s+y^s=z^s $
$s\ne1$,$(x+y-z)\ne0$

Поэтому, в дальнейшем, все решения будем искать исходя из одного числа
$(x+y-z)\ne0 $.

$(x+y-z)\ne0 $- любое число,$x,y,z$-любые.


-- 29.05.2019, 21:30 --

Someone
Спасибо за общение, извините за беспокойство.

 
 
 [ Сообщений: 299 ]  На страницу Пред.  1 ... 15, 16, 17, 18, 19, 20  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group