Все сигналы в многослойной нейросети от первого до последнего слоя называются
признаками. Даже на последнем слое, откуда берётся готовый ответ, это тоже признак. Если в самом первом слое признаки более приземлённые, конкретные, реальные измеренные, то в последующих слоях признаки более абстрактные, обобщённые, более образные.
Признак в нейросетях является квинтэссенцией смысла. Разработчик нейронной сети вовсе не берётся рассуждать вместо машины, он поручает смысл копать ей самостоятельно. Поэтому часто говорят: "мы не знаем, о чём там думают нейросети, мы можем только визуализировать". Некоторые обыватели, далёкие от науки, понимают это так: "учёные ничего не знают!". Это конечно, неправда. Просто копаться в мегабайтах данных человеку реально невозможно. Студенты за 15 минут (ну не быстро!) осваивают работу нейросети по задаче XOR и там нет никаких секретов.
Признак - это число. Если взять все признаки в слое, то получится целый вектор признаков. Целый вектор смысла.
В векторе можно хранить достаточно богатую информацию, и это будет информация, основанная на конкретном входном векторе реальных признаков (обычно обозначают как
). Веса нейросети - это умение вырабатывать абстрактную информацию об объекте (знания).
Комплекс всех слоёв нейросети может образовывать информацию о довольно сложном процессе, например, о процессе разработки модели (моделирования). Веса хранят абстрактную информацию о предыдущих актах процесса, а значит инкапсулируют сложный навык моделирования. Нет никаких ограничений по задачам для нейросети. Но есть проблема - как преподнести информацию, чтобы необходимый набор весов сформировался.