Пример с рядами Тейлора действительно очень удачный, в том плане, что я и подумать не мог, будто про ряды Тейлора можно сказать, что они в чём-то "провалились". Поясните, что за такой феноменологический аспект и почему он вообще важен, если эти ряды реально нужны. У меня первая реакция пока: не получается построить теорию рядов Тейлора на гладких многообразиях - печально конечно, но не катастрофа. Главное чтобы эти ряды были для обычных числовых функций.
Поясню: феноменологический аспект, это когда главное, чтобы они были для гладких многообразий, а ещё алгебраических и вообще формализовались бы в любом достаточно хорошем топосе.
Тем более что, многообразия, как ни крути, сами определяются в терминах

. Я бы попытался понять такую эстетическую позицию, если кто-то хочет совсем отказаться от

и работать только с многообразиями. Но ведь не получится - само понятие многообразия невозможно без понятия об

.
Тут я с вами бы поспорил, я уверен, что покрутить можно так, чтобы не определялись. Почему бы не стартовать, в духе алгебраической геометрии, с некоторой коммутативной алгебры

(считая её "будущей" алгеброй

) но при этом наложить некоторые условия на её функториальные конструкции? Такие попытки уже есть, btw, смотрите "synthetic differential geometry", там стартуют вообще с произвольного гладкого топоса, но я вник не очень.
Для каких задач, изначально сформулированных не на языке категорий, может быть применён функциональный анализ с категориями?
Я не спец. в квантовом функциональном анализе и категорным подходам к функану, но я попробую сформулировать несколько вопросов, на которые он пытается ответить.
1) Квантовая версия алгебры

(а значит и всей теории меры) - это теория

-алгебр. Квантовая версия непрерывных на хаусдорфовом компакте функций

(а значит и всей топологии) - это теория

-алгебр. Какова квантовая версия алгебры

где

скажем, область в

(а значит и всей дифференциальной геометрии)?
2) Что такое гомотопия двух

-алгебр или скажем банаховых пространств? Каковы основные гомотопические инварианты?
3) Как определить "измеримые гильбертовы расслоения" на локализуемых пространствах с мерой?
4) В каком смысле можно говорить о теории гомологий банаховых алгебр?
5) Можно ли построить теорию кодействий квантовых групп на произвольной

-алгебре и что можно из неё извлечь?
6) Можно ли что-то ещё выжать из связи между теорией индекса оператора Фредгольма и теорией Атьи-Зингера?
и напоследок, я приведу вполне конкретную классическую задачу, которую удалось решить методами квантового функ. анализа: это "проблема Халмоша о подобии", отрицательное решение которой предъявил Пезье как раз используя квантовый функ. анализ.