2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6 ... 8  След.
 
 Re: "Почти целые" числа
Сообщение22.11.2015, 19:42 
Аватара пользователя


22/11/15
51
$\Phi^2 + e^2 \approx 10$

 Профиль  
                  
 
 Re: "Почти целые" числа
Сообщение29.11.2015, 16:08 
Аватара пользователя


22/11/15
51
$\frac{7}{5}\frac{\pi}{e}$ $\approx$ \Phi$

$2\pi\sqrt{\Phi}$ $\approx$ 8$

 Профиль  
                  
 
 Re: "Почти целые" числа
Сообщение29.11.2015, 18:24 
Заслуженный участник


27/04/09
28128
В какой-нибудь неискуственной формуле $\varphi$ и $\pi$ содержатся вместе?

 Профиль  
                  
 
 Re: "Почти целые" числа
Сообщение29.11.2015, 18:45 
Аватара пользователя


11/06/12
10390
стихия.вздох.мюсли
Дык! $\cos \frac \pi 5=\frac \varphi 2$. (Или это был сарказм?!)

 Профиль  
                  
 
 Re: "Почти целые" числа
Сообщение29.11.2015, 18:47 
Заслуженный участник


27/04/09
28128

(Оффтоп)

Ага. :-)

 Профиль  
                  
 
 Re: "Почти целые" числа
Сообщение29.11.2015, 20:02 
Аватара пользователя


22/11/15
51

(Оффтоп)

А так чтоб $\pi$ вне тригонометрической/экспонентной ф-ии? Косинус пи это неинтересно :-)

 Профиль  
                  
 
 Re: "Почти целые" числа
Сообщение30.11.2015, 00:49 
Аватара пользователя


11/06/12
10390
стихия.вздох.мюсли
AliceLovelace в сообщении #1078073 писал(а):
А так чтоб $\pi$ вне тригонометрической/экспонентной ф-ии?
$\pi$ является трансцендентным числом, $\varphi$ — алгебраическим. Дальше разжёвывать?

 Профиль  
                  
 
 Re: "Почти целые" числа
Сообщение30.11.2015, 02:05 
Заслуженный участник


27/04/09
28128
А что, можно и вне тригонометрической! Просто засунем $\varphi$ в обратную тригонометрическую. :roll: Хотя вообще, конечно, как раз тот мой вопрос был как раз большей частью к AliceLovelace.

 Профиль  
                  
 
 Re: "Почти целые" числа
Сообщение30.11.2015, 02:10 
Аватара пользователя


11/06/12
10390
стихия.вздох.мюсли
arseniiv в сообщении #1078208 писал(а):
тот мой вопрос был как раз большей частью к AliceLovelace.
Прошу прощения, что не удержал язык за зубами и поломал вашу игрушку испортил интригу :oops:
arseniiv в сообщении #1078208 писал(а):
Просто засунем $\varphi$ в обратную тригонометрическую.
Скучно... (или для AliceLovelace это не будет скучно? :roll: )

 Профиль  
                  
 
 Re: "Почти целые" числа
Сообщение30.11.2015, 02:35 
Заслуженный участник


27/04/09
28128

(Полезу-ка назад в спойлер.)

Aritaborian в сообщении #1078210 писал(а):
Прошу прощения
Ой, да ладно. :-) Вот если бы вы доказали $\mathrm{P = NP}$, я бы на какое-то время потерял ээ… не знаю, может, и ничего бы не потерял, но повод хотя бы был бы — а тут… (I can be overdramatic too!)

Aritaborian в сообщении #1078210 писал(а):
Скучно...
Увы. Но зато требования заказчика выполнены!

 Профиль  
                  
 
 Re: "Почти целые" числа
Сообщение30.11.2015, 11:29 
Аватара пользователя


22/11/15
51
Aritaborian в сообщении #1078173 писал(а):
AliceLovelace в сообщении #1078073 писал(а):
А так чтоб $\pi$ вне тригонометрической/экспонентной ф-ии?
$\pi$ является трансцендентным числом, $\varphi$ — алгебраическим. Дальше разжёвывать?

Не переживайте, тема называется "почти" целые числа. А не вечер оффтопных банальностей, что вы тут устроили)

 Профиль  
                  
 
 Re: "Почти целые" числа
Сообщение30.11.2015, 12:29 
Заслуженный участник
Аватара пользователя


09/09/14
6328
Добавлю сюда ещё парочку выражений, имеющих неплохую относительную точность:
    $\dfrac{{e^e}^{{}^2}}{\varphi} \approx 1000$; \qquad
$\Bigl(\dfrac{\pi+1}{e}\Bigr)^{e} \approx \pi.$

 Профиль  
                  
 
 Re: "Почти целые" числа
Сообщение02.12.2015, 19:06 
Аватара пользователя


22/11/15
51
Навеяло
$\sqrt{5(\frac{\pi + 1}{e} - 1)} =\approx \varphi$
очень точное приближение

И чисто просто (выводится из тех что ранее, не очень точно, зато двойки и тройки))
$\pi \approx \sqrt[2 + 3]{2 ^ {3^2} \cdot \frac{3}{2 + 3}}$

 Профиль  
                  
 
 Re: "Почти целые" числа
Сообщение02.12.2015, 19:18 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
AliceLovelace в сообщении #1078073 писал(а):

(Оффтоп)

А так чтоб $\pi$ вне тригонометрической/экспонентной ф-ии? Косинус пи это неинтересно :-)

$[\pi]=3$

 Профиль  
                  
 
 Re: "Почти целые" числа
Сообщение03.12.2015, 14:33 


08/05/08
601
AliceLovelace в сообщении #1078073 писал(а):

(Оффтоп)

А так чтоб $\pi$ вне тригонометрической/экспонентной ф-ии? Косинус пи это неинтересно :-)

$\pi \cdot 0 = e - e$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 116 ]  На страницу Пред.  1, 2, 3, 4, 5, 6 ... 8  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: mihaild


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group