Я не утверждал, что любая система координат определяет систему отсчёта. Я только сказал, что система координат (подразумевается -- соответствующим образом выбранная, т.е. связанная с интересующим нас телом отсчёта) однозначно определяет систему отсчёта. Разумеется, координаты можно выбрать и так, что среди них либо все четыре будут пространственно-подобными, либо так, что все четыре будут времени-подобными, либо даже так, что все четыре будут свето-подобными. Это не те случаи, когда координаты определяют систему отсчёта...
Ваши слова "выбранные координаты" я понял как "произвольно выбранные". Но дело не только в этом.
...Кстати, Шварцшильдовы координаты под гравитационным радиусом вполне могут определять систему отсчёта. Среди них ровно три пространственно-подобных и ровно одна -- времени-подобная. Так что вполне можно выбрать тело отсчёта, частицы которого будут иметь неизменные пространственно-подобные координаты.
Вы фактически сейчас сами опровергаете себя. Вы писали "Выбранные координаты однозначно определяют...", а оказывается что те же Шварцшильдовы координаты над горизонтом определяют одну СО, а под горизонтом другую. Т.е. ни о какой однозначности определения координатами СО речи идти не может.
Это имеет смысл, в контексте данного дурацкого разговора.
Еще раз, без значения необходимо это или нет- если СО1 сопоставлена СК1, а СО2 сопоставлена СК2 - то тензор будет преобразовываться тензорным способом при переходе СК1<->СК2.
А не тензор - НЕ будет преобразовываться тензорным способом при переходе СК1<->СК2.
Совершенно верно. Но к утверждению Сергея Губанова
Если что-то нековариантное вдруг даёт ответ похожий на правду, то нужно поискать ковариантный способ получения того же самого. Не составляет никакого труда строить тензоры равные нулю для одной системы отсчёта и не равные нулю для другой системы отсчёта как только понимаешь, что системы отсчёта не имеют никакого отношения к системам координат. Система отсчёта характеризуется векторным полем четырёхскорости
. Другая система отсчёта имеет другое векторное поле четырёхскорости
. Векторное поле
никак не связано с векторным полем
, это два разных векторных поля. Зная четырёхскорость
легко вычислить четырёхускорение
:
Четырёхускорение
является примером тензорного поля равного нулю для одной системы отсчёта (инерциальной) и не равного нулю для другой системы отсчёта (неинерциальной), это два разных тензорных поля никак не связанных друг с другом. Другой пример такого тензорного поля:
Для Вашего
примера имеем
Это тензор, а не какая-то "псевдятинка".
Ваши слова никакого отношения не имеют.
Нет, ключевая фраза тут - "птичий язык".
Вот вам аналогичное идиотское высказывание: "два разных бескоординатных вектора нулевой и ненулевой являются тензором который не преобразуется тензорным способом, ибо они при преобразования СК (или СО) не преобразуются друг в друга.". По-вашему оно имеет смысл? По моему - нет - и это чушь собачья.
Тензор - геометрический объект (от координат не зависящий). "Разные наблюдатели" с их разными мировыми - это разные "геометрические объекты".
Наконец-то дошло. В том-то и суть, что разные системы отсчета (СО) - это разные множества наблюдателей (т.е. разных геометрических объектов). А потому никаким образом 4-ускорение и 4-скорость наблюдателя одной СО не связаны с соответствующими величинами наблюдателя другой СО. Даже когда два наблюдателя из разных СО находятся в одной точке пространства-времени.
А при координатных преобразованиях эти самые 4-ускорение и 4-скорость наблюдателя выбранной СО само собой разумеется преобразуются как тензоры.
...Для вашего "понятия СО", интересно другое.
Впервых, что значит необходимость "взаимно-неподвижных наблюдателей" - этого ведь не всегда возможно устроить глобальным способом (когда g метрики существенно зависит от времени, и преобразованиями эту зависимость устранить нельзя)?
Или вы имеете ввиду, просто что у наблюдателей постоянные координаты? ; )
Понятие "взаимная неподвижность двух наблюдателей" имеет инвариантный смысл:
относительная скорость двух наблюдателей равна нулю....
Далее по-вашему, а) часы "наблюдателей" из СО обязаны показывать собственное время или нет?; и если да, то б) обязаны ли часы быть синхронизированными глобально по любом контуре (в смысле поцепочно-эйнштейновским способом для дифференциально близких наблюдателей; как это описано в ЛЛ)
а) Нет. Наблюдатели (и их часы) вовсе не обязаны двигаться по геодезическим пространства-времени.
б) Часы никому ничего не обязаны. Необходимость синхронизации часов возникает когда два наблюдателя хотят сравнить свои показания. Синхронизация часов возможна по любому незамкнутому контуру. Синхронизация по замкнутому контуру возможна лишь при известных условиях на геометрию пространства-времени. Вообщем все по Ландау-Лифшицу.