О том, что моё множество линий
неким волшебным образом вдруг превращается в поверхность утверждали Вы.
А я и утверждаю, что Ваше множество синих линий, проведённых от радиуса, составляют поверхность. Никакого волшебства тут нет, и глупо это вообще отрицать.
Вопрос в том, нафига Вы вообще начали их рисовать в ответ на неоднократные просьбы предъявить гиперповерхность? Решения у Вашего уравнения от этого не появятся.
Ну, Вы можете утверждать что угодно и повторять это сколько угодно раз подряд, но моё множество синих линий
поверхности не составляет. А нарисовал я эти линии для того чтобы показать каким "фаршем", а вовсе не трёхмерной гиперповерхностью, размещаются в пространстве Минковского точки трёхмерного пространства вращающеся системы отсчёта.
В действительности трёхмерное пространство произвольной системы отсчёта не обязано и не может быть гиперповерхностью. Дело в том, что трёхмерная гиперповерхность является вложением, но трёхмерное пространство вращающейся системы отсчёта вложением не является
И что? "Трёхмерное пространство произвольной системы отсчёта" состоит из тех же точек, что и соответствующая гиперповерхность. Просто когда мы говорим про гиперповерхность, мы не заморачиваемся определением на ней метрики. А когда мы говорим про "трёхмерное пространство произвольной системы отсчёта", то мы определяем на этой гиперповерхности метрику в соответствии с приведённой выше формулой. И тут мы, ах, обнаруживаем, что эта метрика не соответствует определению "вложения".
Этими словами Вы продемонстрировали, что не знаете о том, что трёхмерная гиперповерхность в пространстве Минковского является вложением.
Трёхмерная гиперповерхность
в четырёхмерном пространстве Минковского является вложением, на ней существует индуцированная трёхмерная метрика:
Вместе с этим, трёхмерные пространства систем отсчёта в общем случае гиперповерхностями в пространстве Минковского не являются.
Сейчас Вам хочется получить от меня определение подмножества точек четырёхмерного пространства событий принадлежащих одному и тому же трёхмерному пространству некоторой системы отсчёта. А в исходном сообщении речь шла об определении трёхмерных расстояний в случае неравномерно (ускоренно) вращающейся системы отсчёта.
И я сразу спросил Вас, к какому моменту относится измерение этих пространственных расстояний. Ибо ежу ясно, что длина окружности раскручивающейся карусели зависит от времени.
А я Вам сразу и объяснил, что слова "
к какому моменту" обычно имеют смысл при наличии гиперповерхности
и значение
как раз и есть "тот момент". А в данном случае гиперповерхности нет, функции
не существует, поэтому слова "
к какому моменту" не к чему отнести, то есть Ваш вопрос не корректен. В пространстве событий есть некотрое определённое множество пространственно подобных линий (их уравнения мной выписаны), длины этих линий и есть длины окружности карусели в различные "моменты чего-то там", вот и всё.
Это не глупости, и не продолжаются. С моей стороны не было ни одной глупости, все глупости были исключительно с Вашей строны. Более того, с Вашей стороны ещё трижды была прямая ложь, а так же Вы использовали приёмы демагогии "подмена тезиса", "ложная альтернатива". Какими линиями соединаются точки я написал, читайте внимательнее.