2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 387, 388, 389, 390, 391, 392, 393 ... 1102  След.
 
 Re: Сообщение в карантине исправлено
Сообщение11.04.2015, 15:33 


26/03/14
26
Lia в сообщении #1002470 писал(а):
Патамушта Вы не умеете их готовить пока пишешь одну формулу, тыкать в кнопки надо внутри пары долларов, созданной в самый первый раз, а не рядом.


ясно, спасибо

Но всеже как мне кажется одна функция удаления лишних долларов уменьшилабы Вам работы, если такие ошибки часто встречаются.

-- 11.04.2015, 16:35 --

Lia в сообщении #1002465 писал(а):
тоже нужно оформлять как формулы.


ОК

 Профиль  
                  
 
 Re: Сообщение в карантине исправлено
Сообщение11.04.2015, 19:24 


21/10/11
9
post1002238.html исправлена.
Теперь все формулы оформлены правильно.

 Профиль  
                  
 
 Re: Сообщение в карантине исправлено
Сообщение11.04.2015, 19:27 


20/03/14
12041
morek
Замечание осталось в силе.

 Профиль  
                  
 
 Re: Сообщение в карантине исправлено
Сообщение11.04.2015, 23:52 
Админ форума
Аватара пользователя


19/03/10
8952
Munin в сообщении #1002491 писал(а):
Нет, те люди, которые помогают другим - как раз следуют всем техническим аспектам
...
 !  Munin, эта тема исключительно для общения жертв карантинизации с модераторами. Не надо сюда ничего писать, если Ваша тема не перемещена в Карантин.
PAV в сообщении #172626 писал(а):
Просьба участникам форума не писать сюда ничего, помимо заявок на возвращение тем из карантина.

И отвечать мне здесь не надо.

 Профиль  
                  
 
 Re: Сообщение в карантине исправлено
Сообщение12.04.2015, 22:07 


12/04/15
5
topic96093.html

Все обозначения исправлены.

 Профиль  
                  
 
 Re: Сообщение в карантине исправлено
Сообщение12.04.2015, 22:10 


20/03/14
12041
redgr3en
Возвращено.

 Профиль  
                  
 
 Re: Сообщение в карантине исправлено
Сообщение14.04.2015, 09:17 


24/02/15

71
Тема topic94213-15.html исправлена.

 Профиль  
                  
 
 Re: Сообщение в карантине исправлено
Сообщение14.04.2015, 14:10 


14/04/15
5
http://dxdy.ru/post1003730.html#p1003730 дополнил

 Профиль  
                  
 
 Re: Сообщение в карантине исправлено
Сообщение14.04.2015, 15:11 
Аватара пользователя


10/03/15
13
откуда Вам и не снилось
Ploh в сообщении #1002329 писал(а):
Deggial
Тема Площадь цилиндра при помощи поверхностного интегрирования? исправлена в пределах моего скудного знания LaTeX-a:
    все формулы худо-бедно в $\TeX$
    рисунок вынесен в оффтоп (хоть и не понимаю зачем)

(Оффтоп)

Было бы чудесно если кто-нибудь шепнул мне как использовать символ для тройного интегрирования

Простите, а мне ещё долго в карантине тусоваться? :D
Я, конечно, понимаю - пасхальные праздники, друзья, застолья, но очень хотелось бы получить помощь в решении моей проблемы, а карантине это довольно проблематично :wink:

 Профиль  
                  
 
 Re: Сообщение в карантине исправлено
Сообщение14.04.2015, 15:27 


20/03/14
12041
Ploh
Возвращено.
В другой раз после последней реакции модератора на Ваш пост здесь оставляйте ссылку в этой теме еще раз, иначе по умолчанию считается, что она у Вас пока в работе.

 Профиль  
                  
 
 Re: Сообщение в карантине исправлено
Сообщение14.04.2015, 16:53 
Аватара пользователя


10/03/15
13
откуда Вам и не снилось
Lia
Спасибо! :D

 Профиль  
                  
 
 Re: Сообщение в карантине исправлено
Сообщение14.04.2015, 16:54 
Заслуженный участник


09/05/12
25179
PsixVk в сообщении #1003737 писал(а):
http://dxdy.ru/post1003730.html#p1003730
дополнил
Вернул (вернее, переместил в ПРР).

 Профиль  
                  
 
 Re: Сообщение в карантине исправлено
Сообщение14.04.2015, 17:24 
Супермодератор
Аватара пользователя


20/11/12
5728
z994175633105 в сообщении #1003695 писал(а):
Тема topic94213-15.html исправлена.
Было требование:
Brukvalub в сообщении #995154 писал(а):
z994175633105 в сообщении #983497 писал(а):
..
Делаем предположение: алгоритм можно использовать для вывода более простых (не содержащих операции деление) формул восстановления, чем те, которые используются в данное время.
...
Продемонстрируйте, как реализуется такое "предположение".
Требование это не выполнено.
Вместо этого написано:
z994175633105 в сообщении #995312 писал(а):
Применение КТО на практике ограничено условием$ A <$ {0,1,...M-1 },$ и не
сделано попытки выяснить, возможно ли преодолеть неоднозначность восстановления $A$ по остаткам, если условие $ A < $ ${0,1,...M-1 },$ не выполняется.

Выведена формула восстановления $A$ в которой имеется параметр $C_j[math]$$=$ $(1,2...n) $позволяющий просчитать все возможные варианты восстановления чисел в случае многозначности результата, что позволяет выйти за пределы ограничений КТО.
Что очевидно ложно. А также написано
z994175633105 в сообщении #995312 писал(а):

Последний раз редактировалось z994175633105
06.04.2015, 12:01, всего редактировалось 38 раз(а).


Цитата:

z994175633105 в сообщении #983497 писал(а):
..
Делаем предположение: алгоритм можно использовать для вывода более простых (не содержащих операции деление) формул восстановления, чем те, которые используются в данное время.
...
Продемонстрируйте, как реализуется такое "предположение".

Ответ на этот вопрос может стать предметом новой темы. В данной теме, своим замечанием, я наметил направления обсуждения. Частично ответ уже был, когда я привел простую формулу восстановления $A$ по остаткам . Формула проста!
И так, для кого форум, для пользователей задающих вопросы и нуждающихся в помощи, или для "заслуженных участников" внутреннего распорядка? :)

Теорема:

Теорема [Китайская теорема об остатках (КТО)]. Пусть числа$ M_1 , M_2,..., M_k$ — попарно взаимно простые, и
$M= M_1 M_2 ... M_k$ .

Тогда система
$x =B_1\mod{M_1}, x = B_2\mod{M_2}, ... x= B_k\mod{M_k}
$
имеет единственное решение среди чисел $B_n < $ ${0,1,...M-1 },$ и это решение может быть представлено в одном из следующих видов:
.....
представление и доказательство в данном случае не имеет значения в виду тривиальности и известности теоремы.

Теорема основанная на вычислении остатков с помощью алгоритма "взятия $A $по последовательным модулям".

Применение КТО на практике ограничено условием$ A <$ {0,1,...M-1 },$ и не
сделано попытки выяснить, возможно ли преодолеть неоднозначность восстановления $A$ по остаткам, если условие $ A < $ ${0,1,...M-1 },$ не выполняется.

Выведена формула восстановления $A$ в которой имеется параметр $C_j$$=$ $(1,2...n) $[/math]позволяющий просчитать все возможные варианты восстановления чисел в случае многозначности результата, что позволяет выйти за пределы ограничений КТО.

Brukvalub:
Цитата:

Нелепые предположения без подтверждений выглядят как грубый само-пиар, преследующий цель раздуть до размеров открытия тривиальные упражнения в началах элементарной теории чисел.

Brukvalub:Цитата:

Не нужно уводить обсуждение в сторону. Вопрос задан, нужно отвечать за свои слова.


Цитата:

Толковый словарь Ушакова

ПРЕДПОЛОЖЕНИЕПРЕДПОЛОЖЕ́НИЕ, предположения, ср.1. Предварительное суждение, догадка о чем-нибудь, не подтвержденная прочными доказательствами
Надо ли отвечать "за свои предположения"? Чем отвечать, перед кем отвечать?
Где сказано, что автор должен "отвечать" за свои предположения? Вопрос задан!
Направление обсуждения задает автор! Я требую наказывать за попытки увести обсуждение в сторону и "заболтать" тему второстепенными вопросами и требованиями "отвечать" за предположения автора!
Brukvalub:
"тривиальные упражнения в началах элементарной теории чисел".
Наши "тривиальные упражнения" приводят к серьезным выводам о возможности преодолеть ограничения установленные КТО.

Иначе говоря, ученые не видят "бревно в собственном глазу", а пытаются выставить себя непогрешимыми перед общественностью... Получив доказательство своей несостоятельности, как профессионалов "умницы" забалтывают темы, пытаются закрыть их по второстепенным признакам (не отвечаешь на мои "профессиональные" вопросы - получи бан или другое наказание лишь бы спасти "честь мундира")

Супермодератор:z994175633105, ответьте на вопрос ЗУ:...

Ответ на вопрос Brukvalub требует знаний методики оценки сложности. ТС не обязан знать эти методики, ибо тема обращения в форум иная!

ТС на необоснованные вопросы Brukvalub(а) ответил, как считал нужным!
Я ответил на эти вопросы, а не оставил их без внимания!
nnosipov (заслуженный участник):
z994175633105 в сообщении #998640 писал(а):
Цитата:

У темы другое направление.
Ну так снимите своё заявление, и всего делов. На нет и суда нет. И излагайте это другое направление.

ТС снимает предположение о том, что формулы восстановления числа по остаткам . приведенные в теме имеют сложность меньшую, чем уже используемые в настоящее время, как предположение не имеющее отношения к развитию обсуждаемой темы.
Прошу модератора вернуть тему в форум из карантина.
Что в целом совершенно бессодержательно, кроме фразы
z994175633105 в сообщении #995312 писал(а):
ТС снимает предположение о том, что формулы восстановления числа по остаткам . приведенные в теме имеют сложность меньшую, чем уже используемые в настоящее время, как предположение не имеющее отношения к развитию обсуждаемой темы.
кроме текста "как предположение не имеющее отношения к развитию обсуждаемой темы". Т.е. либо напишите явно, что утверждение о том, что Ваш алгоритм лучше, ложно, либо тема останется в Карантине, поскольку вопрос поставлен не Вами а заслуженным участником и относится он к теме объективно, а не по Вашему желанию.
Ответьте на приведённый вопрос, либо согласитесь с тем, что высказывание о том, что Ваш алгоритм лучше, ложно.
Удалите бессодержательный текст.

z994175633105 в сообщении #995312 писал(а):
И так, для кого форум, для пользователей задающих вопросы и нуждающихся в помощи, или для "заслуженных участников" внутреннего распорядка? :)
Это не относится к теме. Обверните его в тег оффтопа или сотрите.

И формулы наберите нормально. Каждая формула и терм заключаются целиком в одну пару долларов. В середине формулы доллары не нужны.

 Профиль  
                  
 
 Re: Сообщение в карантине исправлено
Сообщение14.04.2015, 21:41 


14/04/15
187
тема post1003931.html#p1003931 исправлена

 Профиль  
                  
 
 Re: Сообщение в карантине исправлено
Сообщение14.04.2015, 21:47 


20/03/14
12041
Aiyyaa
Картинку убирайте, формулы оформляйте согласно правилам.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 16528 ]  На страницу Пред.  1 ... 387, 388, 389, 390, 391, 392, 393 ... 1102  След.

Модераторы: cepesh, Forum Administration



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group