Тема topic94213-15.html исправлена.
Требование это не выполнено.
Применение КТО на практике ограничено условием
{0,1,...M-1 },$ и не
сделано попытки выяснить, возможно ли преодолеть неоднозначность восстановления
по остаткам, если условие
не выполняется.
Выведена формула восстановления
в которой имеется параметр
позволяющий просчитать все возможные варианты восстановления чисел в случае многозначности результата, что позволяет выйти за пределы ограничений КТО.
Что очевидно ложно. А также написано
Последний раз редактировалось z994175633105
06.04.2015, 12:01, всего редактировалось 38 раз(а).
Цитата:
z994175633105 в сообщении #983497 писал(а):
..
Делаем предположение: алгоритм можно использовать для вывода более простых (не содержащих операции деление) формул восстановления, чем те, которые используются в данное время.
...
Продемонстрируйте, как реализуется такое "предположение".
Ответ на этот вопрос может стать предметом новой темы. В данной теме, своим замечанием, я наметил направления обсуждения. Частично ответ уже был, когда я привел простую формулу восстановления
по остаткам . Формула проста!
И так, для кого форум, для пользователей задающих вопросы и нуждающихся в помощи, или для "заслуженных участников" внутреннего распорядка? :)
Теорема:
Теорема [Китайская теорема об остатках (КТО)]. Пусть числа
— попарно взаимно простые, и
.
Тогда система
$x =B_1\mod{M_1}, x = B_2\mod{M_2}, ... x= B_k\mod{M_k}
$
имеет единственное решение среди чисел
и это решение может быть представлено в одном из следующих видов:
.....
представление и доказательство в данном случае не имеет значения в виду тривиальности и известности теоремы.
Теорема основанная на вычислении остатков с помощью алгоритма "взятия
по последовательным модулям".
Применение КТО на практике ограничено условием
{0,1,...M-1 },$ и не
сделано попытки выяснить, возможно ли преодолеть неоднозначность восстановления
по остаткам, если условие
не выполняется.
Выведена формула восстановления
в которой имеется параметр
=
(1,2...n) $[/math]позволяющий просчитать все возможные варианты восстановления чисел в случае многозначности результата, что позволяет выйти за пределы ограничений КТО.
Brukvalub:
Цитата:
Нелепые предположения без подтверждений выглядят как грубый само-пиар, преследующий цель раздуть до размеров открытия тривиальные упражнения в началах элементарной теории чисел.
Brukvalub:Цитата:
Не нужно уводить обсуждение в сторону. Вопрос задан, нужно отвечать за свои слова.
Цитата:
Толковый словарь Ушакова
ПРЕДПОЛОЖЕНИЕПРЕДПОЛОЖЕ́НИЕ, предположения, ср.1. Предварительное суждение, догадка о чем-нибудь, не подтвержденная прочными доказательствами
Надо ли отвечать "за свои предположения"? Чем отвечать, перед кем отвечать?
Где сказано, что автор должен "отвечать" за свои предположения? Вопрос задан!
Направление обсуждения задает автор! Я требую наказывать за попытки увести обсуждение в сторону и "заболтать" тему второстепенными вопросами и требованиями "отвечать" за предположения автора!
Brukvalub:
"тривиальные упражнения в началах элементарной теории чисел".
Наши "тривиальные упражнения" приводят к серьезным выводам о возможности преодолеть ограничения установленные КТО.
Иначе говоря, ученые не видят "бревно в собственном глазу", а пытаются выставить себя непогрешимыми перед общественностью... Получив доказательство своей несостоятельности, как профессионалов "умницы" забалтывают темы, пытаются закрыть их по второстепенным признакам (не отвечаешь на мои "профессиональные" вопросы - получи бан или другое наказание лишь бы спасти "честь мундира")
Супермодератор:z994175633105, ответьте на вопрос ЗУ:...
Ответ на вопрос Brukvalub требует знаний методики оценки сложности. ТС не обязан знать эти методики, ибо тема обращения в форум иная!
ТС на необоснованные вопросы Brukvalub(а) ответил, как считал нужным!
Я ответил на эти вопросы, а не оставил их без внимания!
nnosipov (заслуженный участник):
z994175633105 в сообщении #998640 писал(а):
Цитата:
У темы другое направление.
Ну так снимите своё заявление, и всего делов. На нет и суда нет. И излагайте это другое направление.
ТС снимает предположение о том, что формулы восстановления числа по остаткам . приведенные в теме имеют сложность меньшую, чем уже используемые в настоящее время, как предположение не имеющее отношения к развитию обсуждаемой темы.
Прошу модератора вернуть тему в форум из карантина.
ТС снимает предположение о том, что формулы восстановления числа по остаткам . приведенные в теме имеют сложность меньшую, чем уже используемые в настоящее время, как предположение не имеющее отношения к развитию обсуждаемой темы.
кроме текста "как предположение не имеющее отношения к развитию обсуждаемой темы". Т.е. либо напишите явно, что утверждение о том, что Ваш алгоритм лучше, ложно, либо тема останется в Карантине, поскольку вопрос поставлен не Вами а заслуженным участником и относится он к теме объективно, а не по Вашему желанию.
Ответьте на приведённый вопрос, либо согласитесь с тем, что высказывание о том, что Ваш алгоритм лучше, ложно.
Удалите бессодержательный текст.
И так, для кого форум, для пользователей задающих вопросы и нуждающихся в помощи, или для "заслуженных участников" внутреннего распорядка? :)
Это не относится к теме. Обверните его в тег оффтопа или сотрите.
И формулы наберите нормально. Каждая формула и терм заключаются целиком в одну пару долларов. В середине формулы доллары не нужны.