Возникла проблема не существования тензора кривизны в точке z=0. Вы сославшись на какую-то особую причину отказались это исправить. Я же предложил профиль, который позволяет ввести тонкий слой с непрерывным тензором кривизны.
Ещё раз объясняю для особо непонятливых: речь шла о бесконечно тонком слое, о поверхности, по которой негладко склеены два плоских полупространства. Слой положительной толщины никого не интересовал ввиду полной банальности. Никакой проблемы не было, исправлять ничего не требовалось.
Постройте с помощью многочлена приближение к функции |z|.
Нужно "скруглить" уголок, только и всего.
Нам
нужно сгладить функцию

до производных второго порядка, то есть, придумать такую функцию

,

, чтобы функция

и её производные порядка

были непрерывными.
Полагаем

. Проблема, собственно, только в точках

.
Считаем производные:

,

,

,

.
Приравниваем их и получаем систему уравнений

Система эта имеет решение

Тогда

Или Вам непременно нужно эту штуку для модуля сделать? Ради бога, сами проделайте вычисления. Для модуля тоже чётного многочлена четвёртой степени хватит, чтобы получить непрерывные вторые производные; только когда Вы этот сглаженный модуль подставите в метрику, получится многочлен восьмой степени вместо четвёртой.
Ну так при том, что в смысле обобщённых функций он может быть в этом месте замечательно определён.
В каком "в этом"? Обобщённые функции — это линейные функционалы на пространстве основных функций. В точках пространства-времени они никаких значений не имеют. Другое дело, что некоторым из этих функционалов можно сопоставить обычные функции. Но не всем. Вот о значениях этих функций можно говорить.
Обобщённые функции - привычный физикам инструмент, и было бы здорово, если бы его можно применить и здесь.
Да я запрещаю, что-ли? Только ведь дельта-функция

никакого численного значения при

не имеет. Так что задачу доопределения тензора кривизны при

она не решает.