2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5  След.

Что выдает ваш калькулятор, когда вы вводите 0^0
выдает 1 57%  57%  [ 33 ]
выдает ошибку или неопределенность 43%  43%  [ 25 ]
Всего голосов : 58
 
 Re: 0^0 по мнению калькуляторов
Сообщение07.06.2009, 18:52 
Значит тогда вопросы в моем пред. посте можно снимать с обсуждения.

 
 
 
 Re: 0^0 по мнению калькуляторов
Сообщение21.06.2009, 21:04 
ewert в сообщении #219886 писал(а):
вопрос о $0^0$ практически эквивалентен вопросу насчёт ${0\over0}$
Можете это доказать, показать, объяснить?

 
 
 
 Re: 0^0 по мнению калькуляторов
Сообщение07.07.2009, 19:14 
Аватара пользователя
Pi в сообщении #218114 писал(а):
Тут один проголосовал за второй пункт!
Пусть он назовет название калькулятора или программы!
Только если она не собственного изготовления!


"0" будет, название калькулятора Casio fx-991es

Matlab 1 выдает нда, вот сижу и умаю, а что же верно ;) ?

 
 
 
 0^0 в Майкрософтском Экселе 5.0?
Сообщение08.07.2009, 07:02 
В Экселе 5.0 если ввести =0^0 в любую ячейку появляется результат #NUM!, т.е. флаг о одного из типов ошибки.

В Help-е написано:

Начало цитата:
#NUM!

Overview

The #NUM! error value indicates a problem with a number.

Possible cause and Suggested action

Using an unacceptable argument in a function that requires a numeric
argument. For example, using a negative number as an argument in
functions that require positive numbers, such as SQRT(-1). Correct the argument.

Using a worksheet function that iterates, such as IRR or RATE, and
the function is unable to find a result that works. Try using a different starting value for
the function.


Entering a formula that produces a number that is too large or too small
to be represented in Microsoft Excel. Change the formula so that the result is
within the allowed range of numbers.


Конец цитата

 
 
 
 Re: 0^0 по мнению калькуляторов
Сообщение16.09.2009, 20:05 
HP 50g
0^0 =1

 
 
 
 Re: 0^0 по мнению калькуляторов
Сообщение07.01.2011, 19:56 
CITIZEN SPR-285II
0^0 = DOMAIN Er

 
 
 
 Re: 0^0 по мнению калькуляторов
Сообщение08.01.2011, 10:02 
Аватара пользователя
Я считаю, что правильным будет именно вывод сообщения об ошибке. Ведь варианты обхода ограничения возведения в степень 0, равно как и деления на 0 лежат вне области простых арфиметических расчётов.

 
 
 
 Re: 0^0 по мнению калькуляторов
Сообщение08.01.2011, 10:08 
Аватара пользователя
Код:
> bc -l
0^0
1


Код:
>maxima
(%i1) 0^0;
0
0  has been generated
-- an error. To debug this try: debugmode(true);


Код:
> axiom
(1) -> 0^0
(1) ->
   (1)  1
                                                        Type: PositiveInteger


Код:
> R
> 0^0;
[1] 1


Код:
> root
root [1] 0**0
(const int)1


Код:
>calc
; 0^0
   1


А вообще думать надо, что вводишь.

 
 
 
 Re: 0^0 по мнению калькуляторов
Сообщение08.01.2011, 11:19 
rendall в сообщении #396609 писал(а):
Я считаю, что правильным будет именно вывод сообщения об ошибке. Ведь варианты обхода ограничения возведения в степень 0, равно как и деления на 0 лежат вне области простых арфиметических расчётов.

А что, есть такое ограничение?

 
 
 
 Re: 0^0 по мнению калькуляторов
Сообщение08.01.2011, 11:44 
Аватара пользователя
Я полагаю есть. В инструкциях к вычислительному ресурсу. Вы же не ждете, что арифмометр вам расчитает оптимизационную задачу.

 
 
 
 Re: 0^0 по мнению калькуляторов
Сообщение13.01.2011, 01:05 
На вопрос :"Что выдает ваш калькулятор, когда вы вводите 0^0?"... я спросил у калькулятора и он мне выдал 1.
А вот в теме "Выражение 0^0"(жаль что закрылась),я бы ответил что,0^0=0.Был бы не оригинален,но третьим тоже не плохо быть. :D Да,так как это действие,"^"(возведение в степень),является арифметическим действием,то и доказать это можно арифметически,не прибегая к теории множеств и к графикам функций!

 
 
 
 Re: 0^0 по мнению калькуляторов
Сообщение12.12.2012, 23:07 
Аватара пользователя

(Оффтоп)

Вспомнился бородатый анекдот, про то, как девушка на экзамене доказывала, что $\ln 0 = e$, аргументируя это тем, что если ввести на калькуляторе [0][ln], то он выдаст "e".
Мораль: калькуляторы калькуляторами, но свою голову на плечах тоже надо иметь.

 
 
 
 Re: 0^0 по мнению калькуляторов
Сообщение15.12.2012, 09:45 
Staff STF-512
Ma ERROR

 
 
 
 Google и 0^0
Сообщение31.12.2018, 18:19 
Почему Google калькулятор выдаёт значение $0^0=1$? Ведь функция $f(x) = x^x$ не определена в точке $0$, ровно как и $f(x,y) = x^y$ в ${0,0}$
Мы конечно можем говорить о $\lim\limits_{x\to0}^{}x^x$, но причем тут пределы? Так можно сказать, что $f(x) = \frac{8-2x^2}{x^2+4x-12}$ определена в точке $2$ и равна $-1$, но нет, это всего лишь предел. Google не прав?

 
 
 
 Re: Google и 0^0
Сообщение31.12.2018, 20:07 
Аватара пользователя
Скорее всего там используется инструкция [tt]FYL2X[tt], которая вычисляет $x \cdot \log_2 y$ (и дальше $2$ возводится в эту степень). Эта инструкция считает, что $0 \cdot 0 = 0$ (тут можно посмотреть, какие знаки получаются).
Никакого глубокого смысла в гугловском калькуляторе искать не нужно. И тот же результат легко воспроизводится локально.

 
 
 [ Сообщений: 68 ]  На страницу Пред.  1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group