Алия87 писал(а):
Volnovik писал(а):
… Продольное сокращение стержня с приближением к скорости света будет…,
Такое возможно только если в ИСО_Л скорости движения точек А и В стержня АВ различны по величине. А значит и величина ускорений точек А и В стержня АВ в ИСО_Л различна. Ускорение задней точки А больше ускорения передней точки В стержня АВ. Пусть на стержне в точке В находится наблюдатель В с акселерометром, в точке А на стержне находится наблюдатель А с таким же акселерометром. Что покажут акселерометры у наблюдателей: Одинаковые или разные по величине ускорения?
Если одинаковые, то как это согласуется с тем, что в ИСО_Л величины ускорений для А и В разные?
Если разные, к примеру акселерометр у А показал большую величину ускорения, чем у В, то как это будет выглядеть в следующем случае. Пусть стержень АВ движется вдоль линейки, которая неподвижна в ИСО_Л, вплотную к ней, скользя вдоль неё. Наблюдатель А (задний на стержне АВ) по своим часам за одну секунду насчитал, что мимо него на линейке проскочило, к примеру, десять меток. Сколько насчитает меток на линейке передний наблюдатель В, проскочивших мимо него за одну секунду по его часам? Если также десять, то как это согласуется с тем, что его акселерометр показывает меньшее по величине ускорение, чем у А. Если насчитает меток на линейке меньше чем десять, то как это согласуется с тем, что стержень на котором находятся наблюдатели А и В относительно них самих не движется и не сокращается?
Я прекрасно понимаю Ваш вопрос, уважаемая
Алия87, как понимаю и насколько сложно ответить на него полностью, не входя в противоречие с СТО.
Вы даже на базе прошедшей здесь дискуссии могли уже убедиться, сколько подводных камней таится в формализме и в особенности в феноменологии релятивистской концепции. Так, с одной стороны, признавая МСИСО сопутствующей в данный момент времени, бессмысленно рассматривать процессы в следующий момент времени в той же МСИСО. Но это делают. Более того, бессмысленно дифференцировать с учетом изменения МСИСО, если смещение ускоряемого тела рассматривается в данной МСИСО. Но это опять-таки делают, как и многое другое.
При этом получаются странные вещи. В рамках СТО мы вообще не можем оперировать ускоренной СО, ее для нас нет. И при этом мы имеем право посадить наблюдателя на ускоряемый стержень, рассматривая его движение в рамках МСИСО. Более того, никакие две точки стрежня мы не можем рассматривать в одной МСИСО, поскольку, как Вы правильно говорили и
Munin с этим согласился, у них будут разные скорости, а значит, не будет по определению и общей МСИСО. Но даже если стержень, предположим, растягивается, никто не мешает наблюдателю быть на стержне, а значит, и иметь некоторую связанную с ним систему отсчета. Одним словом, парадокс на парадоксе, как следствие искусственности построения СТО.
Наконец, будет сокращаться стержень или растягиваться? Давайте посмотрим так. Если мы не постоянно ускоряем стержень, а только до 0,99999с, а потом он движется инерциально, что при этом имеем? Удлинение на стадии ускорения и схлопывание при переходе к равномерному движению? А вследствие чего? Наблюдатель на стержне фиксирует одно и то же ускорение во все продолжение процесса, в какой бы точке он ни находился. Никаких сил, растягивающих стержень, не наблюдается. Откуда энергия, необходимая для удлинения, которая должна выплеснуться при переходе к равномерному движению? Ведь при переходе к равномерному движению длина стержня согласно СТО должна резко сократиться практически до нуля.
И еще одна проблема с временем в СТО. Как известно, сокращение влияет только на продольные движения, поперечные не изменяются. Взяли двое часов на движущуюся ИСО в виде двух одномерных упругих маятников (на пружинах). Если верить СТО, то продольный маятник должен изменить свои параметры колебаний, поскольку он вдоль движения, а поперечный не должен. И вот наблюдатель в движущейся ИСО видит, что два полностью одинаковых маятника идут различно, меняет он их местами – и различие сохраняется в рамках ориентации маятников, вследствие чего наблюдатель немедленно сделает вывод, что его система движется. А теперь задумаемся: а что, собственно, выявил наблюдатель? А он выявил движение, находясь внутри движущейся ИСО, безотносительно к внешним ИСО! Но это же запрещено в СТО, поскольку нарушает принцип относительности Эйнштейна. Это ведь приводит к пониманию абсолютной скорости, которая отрицается в релятивистской концепции.
Если не нравятся упругие маятники, можно взять и круговые и расположить один маятник в плоскости, совпадающей с направлением движения, а другой – в плоскости, перпендикулярной направлению движения. При этом тела маятников будут двигаться по разным орбитам, что не может не повлиять на периодичность хотя бы потому, что для условно продольного маятника масса будет постоянно изменяться в зависимости от ориентации к направлению движения и движение будет по эллипсу, а для другого маятника масса будет постоянна и движение будет круговым. Вывод тот же.
Так что вопрос, по моему, не в попытках получить и тем более анализировать решение, полученное искусственным методом. Нужно проанализировать саму возможность получения решения данным методом, о чем, собственно, я и говорил все это время. И тогда выяснится, что корректно получить решение в рамках СТО невозможно.
Парадокс растяжения – это только видимая часть айсберга. Суть глубже. И попытками сравнивать с линейками в ИСО_Л это не решается. Тут другой вопрос, от которого ушел
Munin. Смотрите, сам релятивизм говорит, что при изменении скорости ИСО изменяются периоды часов. Предположим на мгновение. Но мы же по часам измеряем не сами периоды, а их количество! С этой точки зрения, изменятся ли показания самих часов при переходе в другую ИСО? Нет! Часы будут идти полностью синхронно, если рассматривать вопрос с точки зрения количества периодов. Мы захотели проверить трансформацию периодов. Послали луч определенной частоты. При приеме частота изменилась, но и принимается это изменение в равной мере трансформированными эталонами. Изменится частота при приеме? Нет.
Но это уже приводит к иному пониманию вопроса, и не к преобразованиям Лоренца, а к другим преобразованиям, которые не могут основываться на показаниях линеек. С этой точки зрения
Жесть, как ни странно, был прав, когда говорил о равенстве собственных времен и что неоткуда взяться этому неравенству. Но этот вывод противоречит СТО, в чем и заключается его неправота, если он таким путем отстаивает СТО. Он пытался оперировать тем, что противоречит защищаемому им формализму, хотя основа для его вывода заложена в самом формализме!
А так, если предположить сокращение мер и только это, то измерения временных интервалов должны приводить к отсутствию разницы в показаниях часов.
Прошу прощения, что несколько сумбурно описал проблему. Дело в том, что в релятивистской концепции очень много завалов, которые даже штрихпунктирно невозможно описать полностью, поскольку одни проблемы наслаиваются на следующие, возникают вопросы Trivial pursuit и это, по опыту знаю, бесконечно. Проще решать задачу, поняв саму проблематичность решений в СТО.
Я также хочу оговориться, не сходя с этого места, что я не собирался и не собираюсь пропагандировать, переубеждать или излагать иные концепции касательно ТО. Я воспринял Ваш вопрос как желание понять причину возникающих проблем. Как мог, я ответил, но в самом рассмотрении Вашей задачи я жестко стоял на концепции СТО и исходил из этого, о чем неоднократно говорил. Так что то, что мною написано – это исключительно для общего понимания проблем, но не для дискуссии по вопросу ускоряющегося стержня. Там моя позиция Вам хорошо известна и я и далее буду придерживаться этой позиции, т.е. оперировать строго в рамках релятивистского формализма.