2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.
 
 Re: Физика твёрдого тела
Сообщение13.08.2025, 07:30 
Изображение

Это n-p-n.
Первое что напрягает.
Эмиттер донорная примесь, тоесть больше электронов об этом говорит уровень Ферми Efэ он находится ближе к Eс зона проводимости. Значит концентрация выше а значит и энергетически он выше базы а на изображении наоборот?

 
 
 
 Re: Физика твёрдого тела
Сообщение13.08.2025, 14:10 
Dron1 в сообщении #1697626 писал(а):
Значит концентрация выше а значит и энергетически он выше базы

Это бессмысленная фраза; слова "он выше базы" не имеют смысла. В каждой из трёх областей (в эмиттере, в базе и в коллекторе) на энергетической диаграмме по вертикали располагаются значения одноэлектронной энергии и среди них важные для нашего понимания уровни энергии. А именно:

$E_V$ -- это потолок валентной зоны. Ниже этого уровня лежат тесно прижавшись друг к другу уровни энергии (т.е. лежит широкая вдоль вертикали полоса энергии), которые в большинстве своём заселены электронами. Малая доля этой энергетической полосы, вблизи потолка, свободна от электронов, и про эти не занятые электронами уровни мы говорим, что они заселены "дырками". В ФТТ доказывается, что дырки в валентной зоне ведут себя как подвижные носители положительного заряда (в отличие от электронов - носителей отрицательного заряда).

Насколько мало или много этих дырок - это зависит от наличия легирующих примесей и их типа в рассматриваемой области полупроводника. Если есть немало донорных примесей (область n-типа), то можно считать, что дырок почти нет, т.е. валентная зона заселена электронами почти до потолка, до уровня энергии $E_V.$ Дырок очень мало. Если, наоборот, есть немало акцепторных примесей (область p-типа), то дырки присутствуют в заметном количестве.

Почему так - это надо объяснять с квантовой механикой и с формулами. Там речь идёт о том, что состояния носителей заряда в зонах проводимости и в валентной "делокализованные", подвижные, а на примесных центрах состояния "локализованные", связанные. На энергетической диаграмме примесные состояния можно показывать как акцепторные уровни энергии $E_A$ и как донорные уровни энергии $E_D.$ Пока не будем в это вдаваться.

Если примесей нет (на практике это означает, что в реальном кристалле примеси и другие дефекты кристаллической решётки всегда есть, но тут заговорили о случае, когда их пренебрежимо мало), то и дырок очень мало в валентной зоне, и электронов очень мало в зоне проводимости. Такой полупроводник называют "собственным".

$E_C$ -- это дно зоны проводимости. Выше лежит полоса энергии (сама зона проводимости), которая в большинстве своём свободна от электронов. Но небольшая доля состояний зоны проводимости, вблизи дна, заселена электронами. Таких электронов мало в области p-типа , и заметно больше в области n-типа.

Интервал энергии шириной $E_g=E_C-E_V$ между потолком валентной зоны и дном зоны проводимости называется запрещённой зоной. В нём нет подвижных (делокализованных) состояний носителей заряда. В нём располагаются примесные уровни, но мы решили их пока не рисовать.

$E_F$ - значение энергии, называемое в технике "уровнем Ферми" (хотя более строго в физике оно называется химическим потенциалом и часто обозначется буквой $\mu$ или $\zeta,$ а понятие "уровень Ферми" в физике может от химпотенциала отличаться. Но в этот нюанс тоже не будем пока вдаваться, будем пользоваться техническим жаргоном).

Величина $E_F$ не имеет вот прям-таки наглядного смысла, а просто служит параметром в функции распределения Ферми-Дирака $f(E)$, которая зависит ещё и от абсолютной температуры $T$ и количественно описывает возможную заселённость электронами состояний с энергией $E,$ если бы все такие состояния существовали.

Конкретно: при $E=E_F$ обязательно получается $f(E_F)=0.5,$ и это означает вот что:

Если состояние с энергией $E=E_F$ доступно электрону (т.е. это примесный уровень, или это состояние в зоне валентной, или в зоне проводимости), то оно с вероятностью $\frac{1}{2}$ заселено электроном и с такой же вероятностью свободно от электрона. Т.е. из-за хаотического теплового движения электроны всё время то приходят на этот уровень, то уходят с него.

А состояния с энергией $E$ большей уровня $E_F$ заселены с меньшей вероятностью, чем $\frac{1}{2}.$ И чем выше $E,$ тем меньше там заселённость электронами. Это "хвост" функции распределения, тянущийся по шкале энергии вверх. И он ещё от температуры сильно зависит: чем сильнее нагреть кристалл, тем сильнее этот хвост растягивается вверх на энергетической диаграмме, т.е. увеличивается вероятность обнаружить электрон (в разрешённом состоянии) с данной энергией $E,$ большей уровня Ферми; хотя эта вероятность всегда остаётся меньше $\frac{1}{2}.$

И наоборот: состояния с энергией $E$ меньшей уровня $E_F$ (если они разрешённые для электрона, т.е. $E$ не лежит тупо в запрещённой зоне, где вообще никаких электронных состояний нет) заселены с большей вероятностью, чем $\frac{1}{2}.$ И чем ниже под уровнем Ферми на диаграмме значение $E,$ тем больше там заселённость электронами. А с повышением температуры эта заселённость уменьшается. В валентной зоне это означает, что там при нагревании появляется больше дырок.

Наконец, ещё один очень важный факт: при термодинамическом равновесии (т.е. когда микроскопическое хаотическое тепловое движение электронов есть, но нет макроскопического тока) уровень Ферми постоянен вдоль полупроводника, даже если в разных областях полупроводника есть разного типа примеси. Т.е. на энергетической диаграмме с контачащими друг с другом областями n-типа и p-типа уровень $E_F$ должен изображаться одной и той же горизонтальной линией во всех областях.

На вашей диаграмме видны три разных уровня Ферми. Это более сложный случай, неравновесный. Нарисуйте, пожалуйста, новую диаграмму аналогично, но для равновесного случая. Сначала надо будет с ней аккуратно разобраться, если будут вопросы. А тогда уже легко будет разобрать, что получается, когда к переходам прикладывают разность потенциалов и течёт ток.

Для простоты мы рассматриваем p- и n-области в одном и том же легированном кристалле, т.е. это не соединение разных химических веществ, не гетероструктура. Поэтому при рисовании равновесной диаграммы надо исходить из того, что:

1. Во всех областях ширина зазора между потолком валентной зоны и дном зоны проводимости, т.е. запрещённая зона $E_g,$ должна быть одинаковой.

2. Уровень Ферми $E_F$ один и тот же во всех областях ; изображается ровной горизонтальной линией.

3. И при этом в разных областях уровень Ферми должен быть по-разному расположен относительно потолка валентной зоны и зоны проводимости - в строгом соответствии со сказанным выше о смысле $E_F,$ как о параметре, связанном с заселённостью электронами уровней энергии в зонах.

 
 
 
 Re: Физика твёрдого тела
Сообщение13.08.2025, 14:37 
Аватара пользователя
Dron1 в сообщении #1697626 писал(а):
Первое что напрягает.
Приведена зонная схема транзистора с приложенными напряжениями между электродами. В этом случае система неравновесная, ток течет. Тогда энергетическое расстояние между уровнями Ферми в смежных областях равно $\Delta E_F=q\Delta\varphi.$ Потенциал базы отрицателен относительно эмиттера, заряд носителей базы $q$ положителен, значит уровень Ферми в базе сдвинут вниз относительно уровня эмиттера. Потенциал коллектора относительно базы положителен, заряд носителя в коллекторе отрицателен, значит уровень Ферми в коллекторе сдвинут вниз относительно базы. Концентрация носителей тут не при делах. Она определяет положение уровня Ферми в соответствующей области относительно края соответствующей зоны.

 
 
 
 Re: Физика твёрдого тела
Сообщение13.08.2025, 16:43 
Не равновесная значит.
Проще нарисовать от руки и обозвать точки в местах перегиба для ориентира.
А что если, принять некое число ну например количество атомов кремния за сто и раскидывать цифры, ну хотя бы будет видно соотношение электронов/дырок по областям, градиенты будет видно. Или это провальная идея?

 
 
 
 Re: Физика твёрдого тела
Сообщение13.08.2025, 17:21 
Аватара пользователя
Dron1 в сообщении #1697751 писал(а):
Или это провальная идея?
Абсолютно провальная.

 
 
 
 Re: Физика твёрдого тела
Сообщение13.08.2025, 18:27 
Dron1

Если трудно нарисовать самому, то посмотрите внимательно на картинку, которую на предыдущей странице выложил уважаемый amon

Изображение

Пока смотрим только на самую верхнюю часть картинки: "Равновесное состояние". Пока не смотрим "прямое включение" и "обратное включение". И не отворачиваемся из-за того, что нарисован не n-p-n транзистор, а только один n-p переход (т.е. как в диоде).

Там слева n-область, а справа р-область. Жирные линии это края зон, т.е. это положения потолка валентной зоны и дна зоны проводимости на вертикальной шкале энергии. Горизонтальная тонкая линия это уровень Ферми.

Три вертикальные линии это область контакта, в этой области края зон изогнулись-наклонились, не смотрим в эту область пока. Смотрим только на самую левую часть диаграммы и на самую правую часть.

В левой части диаграммы:

Уровень Ферми лежит близко к зоне проводимости. А согласно формуле функции распределения вблизи уровня Ферми электронов должно быть заметное количество. Да, вероятность быть там электрону не очень-то маленькая, она лишь немножко меньше $\frac{1}{2},$ но не пренебрежимо малая. Поэтому там и нарисованы электроны (шарики с минусиками :). На дне зоны проводимости их нарисовано больше, а чем выше по энергии, тем электронов нарисовано меньше.

(Всё это именно в соответствии с формулой, ну или с графиком функции распределения: в верхнем "хвосте" функции распределения заселённость электронами всё меньше и меньше. График $f(E)$ можете попробовать рядом нарисовать или в Зи посмотреть.)

А глубоко внизу под уровнем Ферми, в валентной зоне все уровни закрашены сплошным серым цветом. Так на рисунке обозначен тот факт, что там с вероятностью почти единица всё занято электронами.

В правой части диаграммы:

Зона проводимости поднялась высоко над уровнем Ферми. Значит в ней почти не должно быть электронов. Поэтому они там и не нарисованы.

А потолок валентной зоны оказался близко к уровню Ферми. Значит, вблизи него заселённость электронами не единица, а примерно лишь $\frac{1}{2}.$ Это означает, что в заметном количестве есть дырки (есть не занятые электронами уровни). Вот дырки там и нарисованы - в виде плюсиков. У потолка валентной зоны их больше, а чем ниже, тем их меньше. (Т.е. чем ниже под уровнем Ферми, тем заселённость электронами больше, а дырок, значит, меньше. Глубоко под уровнем Ферми дырок практически вообще нет, там одни электроны, сплошной серый цвет на рисунке).

Вопросы? (c)))

 
 
 
 Re: Физика твёрдого тела
Сообщение13.08.2025, 19:44 
Cos(x-pi/2) в сообщении #1697698 писал(а):
на энергетической диаграмме по вертикали располагаются значения одноэлектронной энергии


Ни чо себе, я первый раз такое слышу...
Прочитав текст внизу, я вообще ни чего не понял.
А можно как то на человеческий перевести?

Природа одноэлектронных энергий в теории независимых электронных молекулярных орбиталей и диаграмм Уолша

Предполагается, что «энергия одного электрона» или «энергия связи» в теории независимых электронных молекулярных орбиталей — это изменение энергии ионизации молекулярной орбитали при образовании молекулы. Эта интерпретация обсуждается в контексте диаграммы Уолша для молекулы воды. Общий метод заключается в том, чтобы с помощью систематических приближений и физических аргументов свести теорию молекулярных орбиталей с самосогласованным полем к теории независимых электронов.

В целом результаты подтверждают метод построения диаграмм Уолша, но также показывают, что важно чётко различать энергии ионизации и энергии связи, а также разные типы делокализованных молекулярных орбиталей. Если не делать этих различий, можно получить диаграмму, которая представляет собой смесь нескольких разных, но связанных между собой диаграмм. Оригинальные диаграммы Уолша, по-видимому, основаны на необычном типе делокализованных молекулярных орбиталей. В работе также даётся чёткое определение понятий «связывающие», «несвязывающие» и «антисвязывающие» молекулярные орбитали.

-- 13.08.2025, 20:04 --

Cos(x-pi/2) в сообщении #1697794 писал(а):

Вопросы? (c)))


Подождите, дайте сообразить кто, где...

-- 13.08.2025, 20:19 --

По поводу одноэлектронных энергий, насколько я понял привязать игрик координаты к рисунку просто так не получится ибо там что то невообразимое и что бы это понять надо будет прочитать половину квантовой механики. Но без этого то можно обойтись?

 
 
 
 Re: Физика твёрдого тела
Сообщение13.08.2025, 21:17 
Dron1 в сообщении #1697827 писал(а):
Ни чо себе, я первый раз такое слышу...
Прочитав текст внизу, я вообще ни чего не понял.

Беда...

Попробуем идти совсем малюсенькими шажками. Цитату, которую Вы привели, оставим без внимания. Вы ведь в начале всей этой вашей темы про полупроводники хотели получить недостающую Вам информацию из курса ФТТ? Так ведь? Получайте её:

В ФТТ с помощью квантовой механики выводятся вот такие утверждения:

1) Можно приближённо полагать, что для электрона (для любого одного из огромного количества электронов, которое равно по порядку величины количеству атомов в данном куске кристалла) имеются на шкале энергии $E$ так называемые "уровни энергии квантовых состояний электрона в кристалле".

Эти уровни называются одноэлектронными просто потому, что это допустимые значения энергии для любого одного электрона. Если бы мы просуммировали энергии у всех электронов, то получилась бы энергия всей многоэлектронной системы. Но мы их не суммируем, поэтому и называем одноэлектронными. Только и всего. А тот факт, что для любого электрона (из огромного их множества в кристалле) годится одна и та же картина уровней энергии на шкале $E,$ называется в ФТТ одноэлектронным приближением.

Это просто термины такие, знать их полезно. Потому что без пояснений слово "энергия" непонятное для вдумчивого человека - энергия чего? всех электронов суммарно? или 10 штук электронов? или пары электронов? Ответ: на диаграмме по вертикали ("по игреку", как Вы говорите) откладывается энергия одного электрона; чем больше эта энергия, тем выше она на диаграмме, а не ниже.

Всё, считаю, что это место проехали.

2) Уровни энергии электрона в кристалле расположены по шкале энергии не равномерно, а как бы полосками (по английски пишется bands). Очень много уровней прижались друг у другу и образовали почти сплошную полосу (зону, band). Ещё столько же уровней образовали ещё одну полосу (ещё одна зона). А между этими полосами нет уровней - такое место на шкале энергии называется "запрещённая зона".

3) Принцип Паули: в каждом квантовом состоянии может быть либо один электрон, либо ни одного. То же самое другими словами: каждое электронное квантовое состояние может быть либо заселено электроном, либо свободно от электрона. Два или больше электронов не могут находиться в одном и том же квантовом состоянии. (Аналогия: два или больше зрителей не могут сесть на одно и то же место в зрительном зале. Места в зале это как бы квантовые состояния, а зрители это как бы электроны).

Нюанс: у электрона могут быть 2 квантовых состояния с одним и тем же уровнем энергии $E,$ различающиеся так называемым спиновым квантовым числом. И даже больше может быть состояний с одной и той же энергией, - различающиеся ещё и другими квантовыми числами. С учётом этого обстоятельства принцип Паули разрешает нескольким электронам иметь каждому одну и ту же энергию $E.$ Но этот нюанс надо учитывать в точных расчётах, а в простецких рассуждениях, как у нас тут на форуме, можно считать для простоты, что каждый уровень $E$ доступен только одному электрону.

Итак, считаем, что каждый уровень $E$ может быть либо заселён электроном, либо может быть свободен от электрона. Других вариантов нет.

4) Зон и уровней много - гораздо больше, чем электронов в кристалле. Система электронов стремится так устроиться, чтобы её суммарная энергия была бы поменьше. Поэтому электроны заселяют зоны снизу вверх на шкале энергии (по одному электрону на один уровень). Самые верхние зоны остаются пустыми; электронов-то меньше, чем квантовых состояний. (Аналогия: хреновый спектакль, зрителей в зале меньше, чем мест для них.) Верхняя заполненная под завязку зона называется валентной, затем идёт запрещённая зона, а над ней первая пустая зона называется зоной проводимости.

Тут надо уточнять сказанное. Нам важно такое уточнение: тепловые флуктуации разбрасывают электроны по шкале энергии. Чем выше температура кристалла, тем больше электронов из валентной зоны оказывается запрыгнувшими вверх, в зону проводимости. И кроме того, в кристалле есть дефекты решётки и примеси (доноры, акцепторы); они тоже из-за тепловых флуктуаций запускают электроны в зону проводимости и создают пустые места (дырки) в валентной зоне. Т.е. зона проводимости не совсем пуста, а валентная зона заполнена не совсем под завязку.

Как конкретно расселяются электроны по уровням на шкале энергии - эта картина как раз и определяется функцией распределения Ферми-Дирака. Поэтому постарайтесь получше вникнуть в эту функцию, поразглядывайте её графики с разными значениями температуры $T.$ Это во всех книгах про полупроводники есть.

Пока точка. Попробуйте усвоить и снова посмотреть ту диаграмму.

 
 
 
 Re: Физика твёрдого тела
Сообщение13.08.2025, 22:06 
Cos(x-pi/2) в сообщении #1697841 писал(а):
Вам информацию из курса ФТТ? Т


Ну да. В частности очень хочется посмотреть на источник напряжение Эрли то самое из за которого транзистор не может стать идеальным источником тока. А то ответ оно там где-то внутри не впечатляет.

-- 13.08.2025, 22:09 --

Информации конечно вы мне сегодня надавали вагон...

-- 13.08.2025, 22:43 --

Cos(x-pi/2) в сообщении #1697794 писал(а):
А глубоко внизу под уровнем Ферми, в валентной зоне все уровни закрашены сплошным серым цветом. Так на рисунке обозначен тот факт, что там с вероятностью почти единица всё занято электронами.


Что то не нравится мне фраза, я как то по другому это представлял. Завтра отпишусь по этому поводу.

 
 
 
 Re: Физика твёрдого тела
Сообщение14.08.2025, 02:03 
Dron1 в сообщении #1697844 писал(а):
я как то по другому это представлял

Тогда совсем мелкими шагами идём, не торопимся. Вот отдельно график функции распределения $f(E).$ Нарисован он тут схематично (на самом деле эта ступенька не такая сильно размытая, а более резкая. Но мы же не расчёт точный здесь делаем, а качественно идею хотим разобрать; такой график для этого вполне годится):

Изображение

Смысл $f(E)$ вот какой. Можно сказать, что $f(E)$ это вероятность того, что состояние с энергией $E$ заселено электроном. Можно сказать и по-другому, будет ещё правильнее: $f(E)$ это усреднённое по тепловым флуктуациям число электронов в квантовом состоянии с данным значением энергии $E.$

Учитывая этот смысл функции распределения смотрите на график $f(E)$ и делайте для себя вывод - какие уровни энергии больше заселены электронами, а какие меньше: те, у которых энергия больше или меньше уровня Ферми? И заметьте себе, как плавно заселённость уровней изменяется в зависимости от величины $E.$ То есть проследите, что происходит с заселённостью уровней, когда проводим своим взглядом по шкале энергии от маленьких значений $E$ к большим, и когда наоборот - следим за уровнями от больших $E$ к маленьким.

Вопросы?

Если с графиком $f(E)$ всё стало понятно, то переворачиваем этот график на бок. Т.е. ставим его "на попа". И прислоняем его к диаграмме так, чтобы уровень Ферми на диаграмме и на графике оказался в одном и том же месте шкалы энергии:

Изображение

И теперь сравниваем, какой должна быть заселённость уровней электронами согласно поведению $f(E),$ и как эта же заселённость изображена на диаграмме. Т.е. смотрим, где по шкале энергии на диаграмме электронов обозначено больше, и где меньше; и где есть заметное количество дырок, а где их почти нет. (Дырки это не занятые электронами состояния в валентной зоне. В зоне проводимости полным-полно не занятых электронами состояний, но их мы не называем дырками.)

Вопросы?

 
 
 
 Re: Физика твёрдого тела
Сообщение14.08.2025, 06:26 
Cos(x-pi/2) в сообщении #1697794 писал(а):
А глубоко внизу под уровнем Ферми, в валентной зоне все уровни закрашены сплошным серым цветом. Так на рисунке обозначен тот факт, что там с вероятностью почти единица всё занято электронами.


Металл у него при комнатной температуре много свободных носителей, диэлектрик в зоне проводимости полностью отсутствует свободные носители. Полупроводник занимает промежуточное состояние, да после внесения примеси их становится больше, но и основные электроны также переходят из валентной зоныы в зону проводимости а значит в валентной зоне должны быть дырки, так откуда там всё занято электронами?

 
 
 
 Re: Физика твёрдого тела
Сообщение14.08.2025, 07:52 
Dron1 в сообщении #1697868 писал(а):
но и основные электроны также переходят из валентной зоныы в зону проводимости а значит в валентной зоне должны быть дырки, так откуда там всё занято электронами?


В зону проводимости электрону можно перейти не только из валентной зоны, но и с примесей. Если хотите, то на примесях образуются дырки (и с учетом этих дырок число электронов равно числу дырок, но лишь с учетом ТАКИХ дырок). Но эти дырки на примесях неподвижные, локализованные (потому что на примесях) в образовании тока не участвуют. Про них можно забыть. Формально это описывается сдвигом уровня Ферми почти до самой зоны проводимости (где-то между дном зоны проводимости и примесными уровнями, которые рядом с этим дном). В полупроводнике р-типа аналогично, но примесные уровни близки к потолку валентной зоны, и именно туда сдвигается уровень Ферми. В валентной зоне получаются дырки без электронов в зоне проводимости (электроны на примесных уровнях никого при этом не интересуют, они неподвижные).

Естественно, это все лишь при отсутствии поля, в однородном равновесном случае. Когда полупроводник электрически нейтрален, не заряжен. А если, например, привести в соприкосновение p-полупроводник и n-полупроводник, то электроны из n частично двинутся в p, там проанигиллируют с дырками, а дырки из p наоборот. Образуется обедненный слой, где в n (почти) нет электронов (в зоне проводимсти), а в p нет дырок (в валентной). Но две части этого слоя будут разноименно заряжены за счет оставшихся дырок/электронов на примесях (они-то никуда двинутся не могут). Возникнет электрическое поле двойного электрического слоя, препятствующее дальнейшему перетеканию подвижных дырок/электронов. На энергетических диаграммах это электрическое поле изгибает зоны (в пределах обедненного слоя).

 
 
 
 Re: Физика твёрдого тела
Сообщение14.08.2025, 10:26 
Блин, оказывается я столько времени не правильно трактовал эту диаграмму, жопой на изнанку. А теперь надо переворачивать мозг в правильную сторону.

-- 14.08.2025, 10:33 --

Но если диаграмма отражает только те носители которые участвуют в образовании тока.
То почему дырки примеси в р-области отражены( они не участвуют) а основные дырки в ВЗ которые участвуют в n-области не отражены??? Что то путаница какая-то!?

 
 
 
 Re: Физика твёрдого тела
Сообщение14.08.2025, 10:50 
Dron1 в сообщении #1697881 писал(а):
почему дырки примеси в р-области отражены( они не участвуют) а основные дырки в ВЗ которые участвуют в n-области не отражены???


Что означает эта фраза, тайна великая есть. Научились бы вы сначала ясно выражаться...

 
 
 
 Re: Физика твёрдого тела
Сообщение14.08.2025, 11:53 
1. Незыблемое правило, дырки примеси не участвуют в образовании тока!

Р-область там трех валентный бор образовывает три связи по электронам с кремнием есть, одной нет, это дырка. Дырка примиси находится валентной зоне.

Диаграмма отражает что? Только те кто участвуют в образовании тока.

Мы видим на диаграмме дырки примеси Применив правило первое возникает конфликт правила и того что мы видим. Почему? Ну уж выразился конкретней некуда...

 
 
 [ Сообщений: 100 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group