Ну в самом общем виде работа определяется так. Пусть имеется механическая система (с идеальными связями или без них), с конфигурационным многообразием
на котором опркеделены локальные координаты
. В системе действует обобщенная сила
Если система движется по закону
то работа силы на интервале времени
определяется так:
Если обобщенная сила не зависит от времени и скростей, то данный интеграл превращается в интеграл от дифференциальной формы по соответствующей траектории:
Важно, что в этом последнем случае работа превращается в чисто геометрический объект: инеграл от дифференциальной формы не зависит от способа параметризации кривой, только от направления
drzewo . Посмотрите статью Птушенко в журнале "Квант" (2010г., N5, стр.40) - "О работе, точке приложения силы и точильном круге". Рассматривается как раз случай, когда точка приложения силы путешествует по телу. С одной стороны, вроде найденное в теме определение подтверждается. С другой стороны, есть намёк, что возможны и другие определения.
Уровень обсуждения, однако.