2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 9, 10, 11, 12, 13, 14  След.
 
 Re: Еще один вариант для кубов
Сообщение06.01.2023, 10:06 
Пусть равенство $x^3+y^3=z^3$ (1) выполняется, при некоторых натуральных, взаимнопростых числах $x_1,y_1,z_1$, причем, $x_1$ - нечетное и не делится на 3, а $z_1$ и $y_1$ - соседние числа ($z-y=1$). Перепишем (1) в виде:
$x_1^3=(z_1-y_1)((z_1-y_1)^2+3z_1y_1)$ (1.1);
Умножим $x_1,y_1,z_1$ на произвольное нечетное натуральное число $k$:
$(kx_1)^3=(kz_1-ky_1)((kz_1-ky_1)^2+3(kz_1)(ky_1))$ (1.2);
Обозначим: $kx_1=x_2$, $kz_1=z_2$, $ky_1=y_2$, тогда
$(x_2)^3=(z_2-y_2)((z_2-y_2)^2+3z_2y_2)$ (1.3);
$x_2^3+y_2^3=z_2^3$ (1.4);
Поскольку $k$ - произвольно, а $(z_1-y_1)=1$, любая тройка решения (1) может быть получена умножением $x_1,y_1,z_1$, на $k$.

Вы хотели такого перехода?

 
 
 
 Re: Еще один вариант для кубов
Сообщение06.01.2023, 12:15 
Аватара пользователя
Нет, у вас следствие в другую сторону получилось - что если есть решение с $z - y = 1$ то есть и решение с $z - y = k$. А вам нужно доказать было
dick в сообщении #1575909 писал(а):
Если вообще не существует решения с $(z-y)=1$, то не существует никакого решения
Или, что эквивалентно, если есть решение с $z - y = k$, то есть и решение с $z - y = 1$.

 
 
 
 Re: Еще один вариант для кубов
Сообщение07.01.2023, 17:32 
Завершим анализ равенства (1.1):
$(x_2-1)(x_2+1)=3x_1(x+k_2+k_1)$ (3.3);
$a_1(a_1+2)= 3x_1(x+k_2+k_1)$ (3.4);
Здесь $a_1$ число кратное 6, $ a_1=a/x_1= x_2-1$ (3.5);
Почему мы решили, что на 3 делится $x_2-1$, а не $x_2+1$ ?
Потому что $a<x$ и $a_1<x_2$. Далее:
$a_2(a_1+2)=3(x+k_2+k_1)$ (3.6);
$a_2=a_1/x_1=a/x_1^2$ (3.7);
Но число $a$ делится на $x_1$, но не делится на $x_1^2$.
Следовательно $x_1=(z-y)^{1/3}=1$ и значит $(z-y)=1$.

 
 
 
 Re: Еще один вариант для кубов
Сообщение07.01.2023, 20:04 
Аватара пользователя
Ну что за экономия на символах? После первого за 3 страницы использования переменной можно и процитировать её определение, да и заодно дать ссылку на доказательство равенства (а то приходится гадать - было оно, или вы его прямо тут ввели, считая очевидным).
dick в сообщении #1574832 писал(а):
$(x_2-1)(x_2+1)=x_1(3x+3(k_2+k_1))$ (3.3);
dick в сообщении #1566133 писал(а):
$y=x+k_1$; $z=x+k_2$;

И ЕМНИП $x_1 = \sqrt[3]{z - y}$, $a = x + y - z = \sqrt[3]{3 (z - y)(z - x)(x + y)}$.
Почему вообще $a$ делится на $x_1$? Почему $a / x_1 = x_2 - 1$?
И главное - почему вы предлагаете читателям самостоятельно проделывать арифметические выкладки?

 
 
 
 Re: Еще один вариант для кубов
Сообщение07.01.2023, 22:00 
Вы все правильно поняли. Что $a$ делится на $x_1=(z-y)^{1/3}$ следует из $a=(3(z-y)(z-x)(x+y))^{1/3}$.
Мы делили (1.1) на $(z-y)$ и получили (3.3). Правая часть (3.3), согласно заданных условий, всегда делится на 6.
Значит, в левой части одна из скобок всегда делится на 6. Раз мы делили (3.3) на $(z-y)$, то $x=a+(z-y)$ делили на $x_1$, тогда:
$x/x_1=a/x_1+x_1^3/x_1$
$x_2=a_1+x_1^2$
$a_1=x_2-x_1^2$
Если $x_2-1=a_1$, то $(z-y)=1$.

 
 
 
 Re: Еще один вариант для кубов
Сообщение07.01.2023, 23:38 
Аватара пользователя
Хорошо, $a$ делится на $x_1$ и $a_1 = x_2 - x_1^2$ (кстати если не вводить по переменной на каждое выражение, то текст будет чуть длиннее, но читать его будет проще). А еще если излагать результаты утверждения последовательно, а не сначала сослаться на утверждение, потом доказать. И заодно говорить, что является определением переменной, а что доказывается.
Какое у вас определение $a_1$? Оно в любом случае должно предшествовать формуле (3.4), её использющей (если только вы не хотите сказать, что (3.4) является определением $a_1$).

 
 
 
 Re: Еще один вариант для кубов
Сообщение08.01.2023, 11:41 
Мы предположили, что $(z-y)>1$, в этом случае имеем тройку решения $x, y, z$ и соответствующее этой тройке число $a$.
После деления равенства (1.1) на $(z-y)$, получаем тройку решения $x_2, y_1, z_1$, где $(z_1-y_1)=1$ и соответствующее этой тройке число $a_1=a/x_1$.

 
 
 
 Re: Еще один вариант для кубов
Сообщение08.01.2023, 12:26 
Аватара пользователя
dick в сообщении #1576481 писал(а):
получаем тройку решения $x_2, y_1, z_1$,
Напишите определения этих переменных. $x_2$ уже было, $y_1$ и $z_1$ - нет.
И если в предыдущем посте было что-то важное. то напишите определение $a_1$.

 
 
 
 Re: Еще один вариант для кубов
Сообщение08.01.2023, 12:43 
Про $a_1$ все написано.
$z_1=z/x_1; y_1=y/x_1$

 
 
 
 Re: Еще один вариант для кубов
Сообщение08.01.2023, 13:06 
Аватара пользователя
dick в сообщении #1576486 писал(а):
Про $a_1$ все написано.
Нет, не написано. Выписаны какие-то равенства с его участием, но даже не сказано, как оно собственно определяется. Надо сказать, что является определением, а остальные равенства доказывать.
dick в сообщении #1576486 писал(а):
$z_1=z/x_1; y_1=y/x_1$
И почему эти числа целые?

 
 
 
 Re: Еще один вариант для кубов
Сообщение15.01.2023, 10:42 
Эти числа не целые, но их разница - единица (натуральный куб). У нас было $(z-y)>1$. После деления куба $(z-y)>1$. на $(z-y)$, остается $(z_1-y_1)=1$.

По поводу определения числа $a_1$:
$a_1=a/x_1$.

 
 
 
 Re: Еще один вариант для кубов
Сообщение16.01.2023, 14:19 
Аватара пользователя
А, то есть $(x_2, y_1, z_1)$ - это решение уже в рациональных числах? Ну да, с утверждением "если есть решение в целых числах, то есть решение в рациональных числах при котором $z - y = 1$" я согласен.

 
 
 
 Re: Еще один вариант для кубов
Сообщение16.01.2023, 20:20 
Тройка $x,y,z$ является натуральным примитивным решением. Переход к тройке $x_2,y_1,z_1$, а если нужно, то и далее, мы проводим в рамках натурального примитивного решения $x,y,z$. При этом целостность чисел $y_1,z_1$ уже не имеет значения, значение имеет только истинность равенства, при соблюдении всех прочих условий.
Эту истинность мы опровергли.

 
 
 
 Re: Еще один вариант для кубов
Сообщение16.01.2023, 21:11 
Аватара пользователя
dick в сообщении #1577412 писал(а):
Эту истинность мы опровергли.
Я пропустил, что конкретно опровергли?
Я не знаю, что значит "проводить переход в рамках какого-то решения".
Напоминаю, что бьемся мы (если я правильно понял) за то, чтобы доказать "если есть натуральное решение, то есть и натуральное решение с $z - y = 1$".

 
 
 
 Re: Еще один вариант для кубов
Сообщение17.01.2023, 17:15 
dick в сообщении #1577155 писал(а):
Эти числа не целые, но их разница - единица (натуральный куб). У нас было $(z-y)>1$. После деления куба $(z-y)>1$. на $(z-y)$, остается $(z_1-y_1)=1$.

Неверно.
$(z_1-y_1)>1$.

Например: $9^3-1^3 $

$\frac {9^3}  {8}- \frac{1^3} {8}=(\frac{9}{2})^3-(\frac{1}{2})^3$

$(\frac{9}{2})-(\frac{1}{2})=4$

 
 
 [ Сообщений: 208 ]  На страницу Пред.  1 ... 9, 10, 11, 12, 13, 14  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group