2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 15, 16, 17, 18, 19, 20, 21 ... 49  След.
 
 Re: Интерпретации квантовой механики
Сообщение29.09.2021, 21:01 
Заслуженный участник


29/09/14
1239
realeugene

Об измерении координат и о треках. Постараемся вдуматься ещё раз:

В теории измерению координат частицы сопоставляется базис координатного представления - множество векторов состояния $|\mathbf{x}\rangle.$ Радиус-вектор $\mathbf{x}$ нумерует точки (в моём рассказе с дискретными обозначениями пусть это будут не точки, а сразу элементики $dV$ объёма $V;$ вместо интеграла тогда буду писать сумму по $\mathbf{x}.)$ Базисное состояние $|\mathbf{x}\rangle$ описывает идеализированную ситуацию - как если бы частица в каждом акте измерения, т.е. с вероятностью 1, обнаруживалась в данном месте $\mathbf{x}.$ В состоянии $|\psi \rangle$ отличны от нуля амплитуды вероятности $\langle \mathbf{x}|\psi \rangle$ обнаружения частицы в разных местах. Вероятность есть $|\langle \mathbf{x}|\psi \rangle|^2 = |\psi(\mathbf{x})|^2dV,$ в более привычной записи с волновой функцией. Значит, $|\psi\rangle$ представляется суперпозицией: $$|\psi\rangle = \sum \limits_{\mathbf{x}}|\mathbf{x}\rangle \langle \mathbf{x}|\psi \rangle$$ В терминах волновых функций это означает просто, что состояние частицы $|\psi \rangle$ в координатном представлении описывается волновой функцией $\psi(\mathbf{x}),$ как и учат учебники, например ЛЛ-3. Теперь читаем ваш текст:
realeugene в сообщении #1532978 писал(а):
Повторное измерение в том же базисе даёт повторение результата измерения с вероятностью 1 (минус шум, который можно делать сколь угодно малым).. Это означает, что после первого измерения в разложении состояния квантовой системы по измерительному базису остаётся только одно ненулевое слагаемое.

Если бы было так, как Вы здесь сказали, то после первого измерения вот и осталось бы одно слагаемое с $|\mathbf{x}\rangle,$ и при повторных измерениях частица обнаруживалась бы в одном и том же месте $\mathbf{x}.$

Однако, читаем дальше:

realeugene в сообщении #1533087 писал(а):
Cos(x-pi/2) в сообщении #1533083 писал(а):
Т.е. отловим этот электрон, запустим снова в камеру Вильсона, он послушно создаст капельку в том же самом месте...
Не капельку в том же самом месте, а цепочку близко расположенных капелек в виде тонкого трека.

Внезапно речь пошла о треке. Ну хорошо, пусть. Если событием, наблюдаемым в одном акте измерения, считать трек, т.е. конкретную конфигурацию из капелек в нескольких точках, то множество таких событий есть множество различных возможных треков (конфигураций из капелек). Пронумеруем конфигурации индексом $x,$ и сопоставим им базисные состояния $|\text{track}_x \rangle.$ Разложение $|\psi \rangle$ по этому базису есть $$|\psi \rangle=\sum \limits_x |\text{track}_x \rangle \langle \text{track}_x |\psi\rangle $$ так что $|\langle \text{track}_x |\psi\rangle|^2$ есть вероятность обнаружить конфигурацию капелек с номером $x.$ Видно, что идея, будто после первого измерения остаётся одно слагаемое и результаты повторных измерений становятся одинаковыми (т.е. частица будет каждый раз создавать трек точно одной и той же формы и в одном и том же месте камеры Вильсона), не катит и в этом варианте. Ведь в реальном-то опыте треки раз от раза получаются разными.

Вопрос, почему образуется трек, - интересная и довольно сложная задача в КМ, не тождественная описанию "измерения координат" частицы. Впервые решение дано Моттом в статье 1929 года "The Wave Mechanics of alpha-Ray Tracks". См. также в учебнике Шиффа сюжет "Образование следа в камере Вильсона", стр. 241 (djvu-скан книги есть в библиотеке eqworld). Кратко говоря, вероятность $|\langle \text{track}_x |\psi\rangle|^2$ оказывается не пренебрежимо малой только для таких конфигураций, в которых капельки выстраиваются приблизительно в одну линию, проходящую через ядро-источник альфа-частицы. Или - в линию, параллельную волновому вектору частицы, если начальное состояние частицы описывается плоской волной. Это выводится на примере двух атомов (двух центров образования капелек), с которыми может провзаимодействовать частица, во 2-м порядке теории возмущений по взаимодействию частицы с атомными электронами.

realeugene в сообщении #1533087 писал(а):
Рассматриваете ли вы пару щелей в опыте интерференции электронов как "новый источник"?
Я не понял вопроса. Источник там один, как написано и нарисовано в упоминавшейся книжке Фейнмана.

 Профиль  
                  
 
 Re: Интерпретации квантовой механики
Сообщение30.09.2021, 00:05 


12/08/21

219
Cos(x-pi/2)
Хорошо, даже если частица после коллапса (проекции) расплывается дальше по своей динамике, то что? Наш эксперимент заканчивается после такого дельтообразного коллапса, что будет дальше нас может и не интересовать. Можно же взять такие квантовые системы, где такого не происходит, например как со спином, который статичен во времени, если его не трогать.

 Профиль  
                  
 
 Re: Интерпретации квантовой механики
Сообщение30.09.2021, 01:17 
Заслуженный участник


29/09/14
1239
Markus228, извините меня, пожалуйста; возможно я просто тупой дурак и поэтому не понимаю разговоров о коллапсе.

Понимаю, как в КМ описываются переходы частицы (или, в общем случае, системы частиц) "из начального состояния в конечное состояние"; понимаю, как вычисляются вероятности таких переходов - например, в теории возмущений через квадрат модуля матричного элемента энергии возмущения, вызывающего переход (ну Вы знаете, о чём речь: о т.н. золотом правиле Ферми).

Конечно, я читал и, будучи студентом, слышал на лекциях о безуспешных попытках первооткрывателей КМ вскрыть механизм "редукции волнового пакета" (теперь эту редукцию чаще называют коллапсом состояния), т.е. - о безуспешности объяснений того, как частица "размазанная по своему облаку вероятности" выбирает, в какой точке обнаружиться. Ни скрытые параметры, ни фантастические траектории Бома не дают удовлетворительного во всех отношениях объяснения.

В итоге мы имеем КМ в виде науки о вероятностях - вот этому меня учили, и об этом же написано в учебниках, и это же самое разъяснял Фейнман (который, на мой (и, разумеется, не только мой) взгляд, наиболее доходчиво умел объяснять людям квантовую теорию). Разговор о коллапсе в этой КМ ничего не давал и не даёт для решения конкретных задач; поэтому в практических приложениях КМ (например, в ФТТ, я это уже подчёркивал не один раз) коллапс вообще не упоминается - из-за ненадобности этого понятия.

Объясните, пожалуйста, какая конкретная Вам польза от идеи о коллапсе вектора состояния? (вдруг тогда и до меня дойдёт :)

 Профиль  
                  
 
 Re: Интерпретации квантовой механики
Сообщение30.09.2021, 01:29 
Заслуженный участник
Аватара пользователя


04/09/14
5241
ФТИ им. Иоффе СПб
Cos(x-pi/2) в сообщении #1533248 писал(а):
Объясните, пожалуйста, какая конкретная Вам польза от идеи о коллапсе вектора состояния?
А поговорить?

 Профиль  
                  
 
 Re: Интерпретации квантовой механики
Сообщение30.09.2021, 01:40 
Заслуженный участник


29/09/14
1239
:mrgreen:
Вообще-то, на предыдущих страницах я уже "наапоговорился" досыта. Не, всё... всем спокойной ночи, сладких снов. (Приношу извинения за оффтоп.)

 Профиль  
                  
 
 Re: Интерпретации квантовой механики
Сообщение30.09.2021, 01:45 
Заслуженный участник


18/09/21
1756
Cos(x-pi/2) в сообщении #1533248 писал(а):
Объясните, пожалуйста, какая конкретная Вам польза от идеи о коллапсе вектора состояния?
Попробуйте описать всё систему целиком многочастичной волновой функцией - и частицу, и измеряющий прибор, и экспериментатора.
Эта волновая функция эволюционирует со временем в соотвествии со своим Гамильтонианом.
И в этой эволюции нет никаких коллапсов. Вообще нет. Тем ни менее, в эксперименте коллапс наблюдается.

Вот отсюда и все разговоры про коллапс и про интерпретации КМ уже более 100 лет.

 Профиль  
                  
 
 Re: Интерпретации квантовой механики
Сообщение30.09.2021, 02:18 
Заслуженный участник


29/09/14
1239
zykov

Конечно. Понятно, откуда разговоры. Физика это искусство построения моделей, основанное на искусстве разумно поставить задачу. На разных уровнях масштабов в физике разные феноменологии, разные подходы к постановке задач. А философ, топает ножкой и требует: ну-ка, давай описывай мне и частицу, и измеряющий прибор, и экспериментатора, и вселенную - всё-всё одинаково, единой волновой функцией. Не улавливает философ, что это не есть постановка задачи в практически значимой физике.

Понятно откуда разговоры; непонятно - какая от них образовалась польза за эти почти 100 лет.

P.S.
В эксперименте наблюдается не коллапс воображаемой волновой функции (которую ни вычислить ни написать толком никто не в силах), а конкретные результаты, имеющие в каждом конкретном случае вполне конкретное описание в адекватных эксперименту терминах. Например, если в эксперименте частица обнаружилась в данной точке, то это и значит, что "частица обнаружилась в данной точке", а не воображаемая кем-то "волновая функция сколлапсировалась в точку".

 Профиль  
                  
 
 Re: Интерпретации квантовой механики
Сообщение30.09.2021, 03:02 
Заслуженный участник


18/09/21
1756
Да нет, это не философия, а физика.
Если так описать всё систему, то противоречит экперименту. Отсюда вполне физический вопрос, как правильно её описать?
Нужно ли изменить уравнения КМ и получить "объективный коллапс"? Или уравнения те же остаются, но можно подтянуть какое-то хитрое объяснение, что на самом деле в эксперименте нет противоречия (т.е. какую-то интерпретацию).
Текущее положение дел такое, что никто не знает, хотя есть огромное количество гипоез.

 Профиль  
                  
 
 Re: Интерпретации квантовой механики
Сообщение30.09.2021, 05:45 
Заслуженный участник


20/08/14
11714
Россия, Москва

(Оффтоп)

Мне, как сугубо чайнику в КМ, ситуация представляется похожей на решение кубических уравнений когда-то давно: что такое $\sqrt{-1}$ мы не знаем, но если подставить в формулы, то результат всегда правильный, а без него не считается. Ровно как в КМ: подставил и подсчитал правильно, но что именно подставил непонятно. И в отличие от комплексных чисел вменяемого подхода пока нет. До того нет, что стали говорить мол "не надо и понимать что подставляешь, главное с ответом сходится".
Плюс с одной стороны волновая функция как принципиально ненаблюдаемая сущность отрезается известной бритвой вместе с известным чайником, с другой стороны она нужна для расчётов. Ощущение что математическому трюку (ненаблюдаемой сущности) дали поблажку и оберегают от бритвы так как он слишком великолепно предсказывает результаты опытов. И дружно (за исключением практиков) ищут как построить "теорию комплексных чисел", чтобы и смысл всему (и ВФ, и её коллапсу) придать, и опыты описывались, и работающие формулы сохранить, и основополагающими принципами не поступиться.
Открещиваться от этой проблемы на откуп философам это как отказываться от комплексных чисел, ведь в практике пока хватает и непонятного $\sqrt{-1}$. Хм, аналогия даже глубже чем думал. ;-)
Извините если банальности.

 Профиль  
                  
 
 Re: Интерпретации квантовой механики
Сообщение30.09.2021, 07:20 


12/08/21

219
Cos(x-pi/2) в сообщении #1533256 писал(а):
В эксперименте наблюдается не коллапс воображаемой волновой функции (которую ни вычислить ни написать толком никто не в силах), а конкретные результаты, имеющие в каждом конкретном случае вполне конкретное описание в адекватных эксперименту терминах. Например, если в эксперименте частица обнаружилась в данной точке, то это и значит, что "частица обнаружилась в данной точке", а не воображаемая кем-то "волновая функция сколлапсировалась в точку".

Ну так вы сами писали, что у нас есть одна и та же квантовая система для серий экспериментов. Когда мы не проводим измерения над частью системы, в эксперименте наблюдается результат интерференции амплитуд вероятности (этой части системы), а когда провели измерения, то интерференция пропала, т.к. эти амплитуды вероятности превратились в классические дельтаобразные определенности, которые подчиняются обычной вероятностной статистике (по типу орел/решка), это и есть наблюдаемый коллапс

 Профиль  
                  
 
 Re: Интерпретации квантовой механики
Сообщение30.09.2021, 10:00 


27/08/16
10171
Cos(x-pi/2) в сообщении #1533234 писал(а):
Я не понял вопроса. Источник там один, как написано и нарисовано в упоминавшейся книжке Фейнмана.

Источник исходно один. Пуляюший электроны более-менее равномерно в сторону экрана со щелями. Что можно увидеть, если экран со щелями не ставить, а поставить вместо него экран, заполненный детекторами. Но потом мы поставили классический экран с двумя щелями, поглощающий электроны вне щелей и пропускающий дальше электроны в состоянии с двумя пиками поперечного распределения. Этот экран проецирует состояния летящих электронов на базисное состояние с двумя пиками, проводя классическое измерение их поперечной координаты в таком базисе. Мой вопрос был: рассматриваете ли вы этот экран с парой щелей как новый источник, от которого дальше система эволюционирует унитарно? Фейнман, как я понимаю, не рассматривает, как и другие авторы. Но что экран проводит классическое измерение при первоначальном описании этого опыта часто как-то опускают, видимо, для простоты.

Cos(x-pi/2) в сообщении #1533248 писал(а):
Объясните, пожалуйста, какая конкретная Вам польза от идеи о коллапсе вектора состояния? (вдруг тогда и до меня дойдёт :)
А как без него разбираться, ну например, с квантовым эффектом Зенона?

Cos(x-pi/2) в сообщении #1533256 писал(а):
В эксперименте наблюдается не коллапс воображаемой волновой функции (которую ни вычислить ни написать толком никто не в силах)
У нас есть поток одиночных электронов. Что мешает промерить их матрицу плотности спиновой волновой функции или, даже, найти направление их спина, если они в одном состоянии? С точностью до фазы, разумеется.

 Профиль  
                  
 
 Re: Интерпретации квантовой механики
Сообщение30.09.2021, 10:05 


07/08/14
4231
Markus228 в сообщении #1533263 писал(а):
а когда провели измерения, то интерференция пропала
С одной узкой щелью тоже наблюдаются полосы. Вообще - с любым $непрозрачным$ препятствием. Возможно, полосы появляются не потому что щели, а потому что хотя бы один барьер, то есть такая конфигурация, в которой есть два барьера - непроницаемый и проницаемый.

 Профиль  
                  
 
 Re: Интерпретации квантовой механики
Сообщение30.09.2021, 10:27 


01/03/13
2611
zykov в сообщении #1533255 писал(а):
Тем ни менее, в эксперименте коллапс наблюдается.

Можно пример наблюдаемого коллапса?

 Профиль  
                  
 
 Re: Интерпретации квантовой механики
Сообщение30.09.2021, 10:43 
Заслуженный участник


18/09/21
1756
Запускаем один электрон через две щели.
Его волновая функция имеет интерференционную форму и покрывает большую площадь на фотопластине.
Но если открыть камеру и посмотреть на фотопластину, то цвет поменяло только одно фотозерно.
Т.е. состояние электрона сколлапсировало.

 Профиль  
                  
 
 Re: Интерпретации квантовой механики
Сообщение30.09.2021, 10:53 


01/03/13
2611
zykov
Современные физики, которые реально разбираются в КМ, давно пришли к выводу, что коллапса не существует. Это было ошибкой вводить редукцию фон Неймана. В случае с фотопластинкой происходит постепенная эволюция ВФ свободного электрона согласно УШ в ВФ свободной орбитали иона серебра. Т.е. в данном случае коллапса ВФ нет. Её вообще никогда нет, это запрещено. ВФ может только непрерывно во времени меняться.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 731 ]  На страницу Пред.  1 ... 15, 16, 17, 18, 19, 20, 21 ... 49  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group