2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1 ... 21, 22, 23, 24, 25
 
 Re: Вселенная внутри Черной Дыры
Сообщение05.06.2016, 20:27 
Заслуженный участник
Аватара пользователя


23/07/05
17987
Москва
schekn в сообщении #1129295 писал(а):
Если есть полная система уравнений, то не вижу проблем перевести ее в другую систему координат , соблюдая нужную гладкость. Решения не пропадут. Но то, что Вы называете смена "калибровочных условий" это не совсем такая процедура.
ОТО инвариантна относительно калибровочных преобразований: предсказания значений наблюдаемых величин не зависят от калибровочных условий. Поэтому решения "не пропадут" и при смене калибровочных условий. Грищук об этом пишет.

schekn в сообщении #1129295 писал(а):
Об этом математик Темчин и пишет , а он на порядок подготовленнее меня.
Поэтому Вы не понимаете, что он пишет.

 Профиль  
                  
 
 Re: Вселенная внутри Черной Дыры
Сообщение06.06.2016, 08:24 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599
schekn в сообщении #1129295 писал(а):
Ковариантную производную можно ввести в ОТО только при помощи вспомогательного фона

Это ещё почему? Нет, конечно!

 Профиль  
                  
 
 Re: Вселенная внутри Черной Дыры
Сообщение06.06.2016, 10:39 
Аватара пользователя


10/12/11
2427
Москва
Someone в сообщении #1129310 писал(а):
ОТО инвариантна относительно калибровочных преобразований: предсказания значений наблюдаемых величин не зависят от калибровочных условий. Поэтому решения "не пропадут" и при смене калибровочных условий. Грищук об этом пишет.
У нас получилось, что добавляя условия синхронности появляется вакуумное решение под горизонтом. А добавляя гармонические (нековариантные) условия Дондера-Ланцоша этого решения нет.

Далее Вы говорите, что Вам не требуется вводить тензор ЭМ гравитационного поля и без него хорошо. Но тем не менее доказательства слабейшего принципа эквивалентности о равенстве инертной и тяжелой масс проводится с помощью компоненты $t^{00}$ во многих учебниках, в том числе и ЛЛ-2. Если Вы говорите, что этот результат не зависит от калибровки, то это не так.
Также потеря энергии системы в результате излучения гравитационных волн проводится с помощью смешанной компоненты ,например $t^{01} $. Поэтому Ваше заявление требует обоснования.

Цитата:
Утундрий в сообщении #1129375 писал(а):
schekn в сообщении #1129295
писал(а):
Ковариантную производную можно ввести в ОТО только при помощи вспомогательного фона

Это ещё почему? Нет, конечно!

Ну по статье Грищука , скажем условия калибровки (15) (или (4)) :
$$[\sqrt{-g}g^{\mu\nu}]_{;\nu}=0$$
Тут берется ковариантная производная по метрике фона, а , если мне говорят, что этот фон фикция и абсолютно произволен в рамках ОТО, то мы имеем полный произвол в калибровке и я не вижу в нем смысла.
Если же не вводить фон и брать обычную производную , то все сведется к условиям , которые использовал Фок , но даже Geen заметил, что сферические координаты уже не могут быть гармонические в этом смысле.

-- 06.06.2016, 11:15 --

epros в сообщении #1129169 писал(а):
Например, коллапс более тяжёлых звёзд на стадии белого карлика не останавливается.

Вы наверное имеете в виду предел Чандрасекара. Но он рассчитывается для Ньютоновских звезд. Там давление на поверхности ноль, а затем оно монотонно растет ближе к центру. В данном случае мы имеем сверхмассивный объект и плотность у него в координатах $(r,t)$ выше у границы шара. Причем уравнения будут все те же , только давление будет расти от нуля, а потом падать до нуля к центру. Я не вижу причин, по которым нельзя было бы подобрать соответствующий профиль для давления и получить стабильный массивный объект. Разумеется давление все таки надо ввести и уйти от идеальной пыли.
epros в сообщении #1129305 писал(а):
Строго говоря, нужно брать систему отсчёта, сопутствующую пыли, и в ней считать объём пылевого облака в момент прохождения горизонта событий

Если посмотрите конец параграфа 100 ЛЛ-2 (комментарии после 100.24) или Вайнберга формулы (11.1.18) и (11.1.23), то для расчета полной массы с учетом гравитационной энергии в узкой сферической оболочке нужно брать вот такую формулу:
$$4{\pi}r^2\bar{\rho}\sqrt{g_{rr}}dr$$
где $\bar{\rho}$ - это плотность в локально-инерциальной системе отсчета.
Судя по метрике (51), которую я получил или которую получил Вайнберг , только при других начальных условиях:
$$g_{rr}=\frac{1}{\sqrt{1-F/r}}$$
В нашем случае : $F=r_g\frac{R^3}{a_0^3}$
На границе $R=a_0$ , тогда:
$$4{\pi}r^2\bar{\rho}\frac{1}{\sqrt{1-r_g/r_0}}dr$$

Имеет особенность при стремлении $r_0$ к гравитационному радиусу.
Если отступим от горизонта, то будем искать профиль давления уже с учетом данной конфигурации.

 Профиль  
                  
 
 Re: Вселенная внутри Черной Дыры
Сообщение06.06.2016, 11:20 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Как много schekn открытий чудных ещё предстоит... например, что это обычная производная, а не ковариантная, зависит от калибровки...

 Профиль  
                  
 
 Re: Вселенная внутри Черной Дыры
Сообщение06.06.2016, 11:45 
Заслуженный участник
Аватара пользователя


23/07/05
17987
Москва
schekn в сообщении #1129392 писал(а):
ем не менее доказательства слабейшего принципа эквивалентности о равенстве инертной и тяжелой масс проводится с помощью компоненты $t^{00}$ во многих учебниках, в том числе и ЛЛ-2
Это не доказательство чего-либо, а иллюстрация применения псевдотензора. Во-первых, полученное таким образом "равенство" справедливо только в весьма специальном случае. Во-вторых, в ОТО нет никакой "тяжёлой" массы, поскольку масса не является источником гравитационного поля и не реагирует на гравитационное поле. В-третьих, в ОТО справедлив сильный принцип эквивалентности, который и определяет воздействие гравитации на всё остальное.

schekn в сообщении #1129392 писал(а):
Тут берется ковариантная производная по метрике фона, а , если мне говорят, что этот фон фикция и абсолютно произволен в рамках ОТО, то мы имеем полный произвол в калибровке и я не вижу в нем смысла.
Смысл есть: в определённых ситуациях упрощаются уравнения.
schekn в сообщении #1129392 писал(а):
Если же не вводить фон и брать обычную производную
По-моему, у Грищука ясно сказано: эти условия получаются, если фоновая метрика — метрика Минковского. Задайте на фоне метрику $d\sigma^2=c^2dt^2-dx^2-dy^2-dz^2$, и условие (15) превратится в (16). Вы действительно совсем не понимаете то, что читаете? Или притворяетесь?

schekn в сообщении #1129392 писал(а):
У нас получилось, что добавляя условия синхронности появляется вакуумное решение под горизонтом. А добавляя гармонические (нековариантные) условия Дондера-Ланцоша этого решения нет.
Грищук на странице 156 объясняет, как это обходится.

 Профиль  
                  
 
 Re: Вселенная внутри Черной Дыры
Сообщение06.06.2016, 13:21 
Аватара пользователя


10/12/11
2427
Москва
Someone в сообщении #1129417 писал(а):
По-моему, у Грищука ясно сказано: эти условия получаются, если фоновая метрика — метрика Минковского. Задайте на фоне метрику $d\sigma^2=c^2dt^2-dx^2-dy^2-dz^2$, и условие (15) превратится в (16). Вы действительно совсем не понимаете то, что читаете? Или притворяетесь?

Действительно не понимаю, как у Вас привязана плоская метрика записанная даже пусть в галилеевых координатах к готовому произвольному решению уравнений Эйнштейна, записанную в каких-то определенных координатах. Поскольку ни у Грищука, ни у Петрова нет примеров и никто не хочет их дать, то давайте я распишу его в отдельной теме, как я это понимаю, а потом Вы скажите, где ошибка на Ваш взгляд.
Кстати то, что Вы сейчас написали есть в РТГ, там это понятно откуда берется, а вот в ОТО нет.
Но спорить что лучше, это фактически спорить на уровне постулатов.

-- 06.06.2016, 13:22 --

Munin в сообщении #1129402 писал(а):
например, что это обычная производная, а не ковариантная, зависит от калибровки...

Такого я не говорил. А что в ОТО понимается под "калибровкой", то это надо спрашивать у конкретного теоретика. Что например понимал Фок?

-- 06.06.2016, 13:29 --

epros в сообщении #1129305 писал(а):
Соответственно, плотность пыли тоже окажется конечной.

Должен сделать поправку, все таки Вайнберг называет выражение (11.1.19) "полной энергией вещества" и плотность этой энергии , как я показал , имеет особенность около границы при приближении к горизонту.

 Профиль  
                  
 
 Re: Вселенная внутри Черной Дыры
Сообщение06.06.2016, 13:31 
Заслуженный участник
Аватара пользователя


28/09/06
10983
schekn в сообщении #1129392 писал(а):
Вы наверное имеете в виду предел Чандрасекара

Предел Чандрасекара, потом предел Оппенгеймера-Волкова ... Какая разница? Речь о том, что для определенных видов материи есть возможность сопротивления коллапсу до определённой массы звезды, а потом - нет. Вы же пытаетесь найти какой-то универсальный механизм, который противодействует коллапсу всегда. Я говорил: попробуйте поискать механизм "затвердевания" пыли, имеющей плотность меньше атмосферы Земли. Облако пыли массой с Галактику уйдёт под горизонт событий примерно при такой плотности. Это Вам - не вырожденный нейтронный газ (как у нейтронной звезды) и даже не вырожденный электронный газ (как у белого карлика).

schekn в сообщении #1129392 писал(а):
плотность у него в координатах $(r,t)$ выше у границы шара

:evil: Мне уже надоело слушать эту ерундень.
Во-первых, плотность в координатах $(r,t)$ ничего не значит. Я неоднократно говорил, что
epros в сообщении #1129305 писал(а):
нужно брать систему отсчёта, сопутствующую пыли

Во-вторых, я неоднократно говорил, что эффект "концентрации к поверхности шара" - не заслуживающая внимания ерунда, потому что
epros в сообщении #1128672 писал(а):
Распределение пыли по слоям ... зависит от выбора начальных условий.


schekn в сообщении #1129392 писал(а):
для расчета полной массы с учетом гравитационной энергии в узкой сферической оболочке нужно брать вот такую формулу:
$$4{\pi}r^2\bar{\rho}\sqrt{g_{rr}}dr$$
где $\bar{\rho}$ - это плотность в локально-инерциальной системе отсчета.

Это тривиальным образом верно, если $4 \pi r^2$ имеет смысл площади сферы, а $g_{0 \alpha} = 0$. Ну и что? Отсюда я вижу только то, что Вы собрались считать плотность в Ваших синхронных координатах $(t,r)$, которые ничего не значат, а не в сопутствующей пыли СО, как я говорил.

 Профиль  
                  
 
 Re: Вселенная внутри Черной Дыры
Сообщение06.06.2016, 13:43 
Аватара пользователя


10/12/11
2427
Москва
epros в сообщении #1129440 писал(а):
Это тривиальным образом верно, если $4 \pi r^2$ имеет смысл площади сферы, а $g_{0 \alpha} = 0$. Ну и что? Отсюда я вижу только то, что Вы собрались считать плотность в Ваших синхронных координатах $(t,r)$, которые ничего не значат, а не в сопутствующей пыли СО, как я говорил.

Вообще-то $(t,r)$ - это не синхронные координаты, Вы опять запутались, а стандартные Шварцшильдовские.
Я лишь обращаю Ваше внимание, что Оппенгеймер-Волков (и что то же самое у Вайнберга в главе 11) решают задачу для астрофизических статических объектов именно в данных координатах. И я не вижу почему ту же задачу для массивных тел в предельном случае не решать также, если уже введено давление.
Обратите внимание, что ТЭИ они берут в таком же виде:
$$T^{\mu\nu}=(\rho+p)u^{\mu}u^{\nu}-pg^{\mu\nu} $$
и называют $\rho$ - плотностью, которое входит у них в систему дифференциальных уравнений, и не в синхронных координатах. Поскольку они выписывали их для ньютоновских звезд, то данная плотность связана с массой вещества, которую они обозначили готической $M(R)$ .

Если Вы говорите про универсальный закон остановки пыли+ давление, то возможно и не удастся придумать без дополнительный сущностей. Но это только в рамках ОТО.

-- 06.06.2016, 13:56 --

Someone в сообщении #1129417 писал(а):
Грищук на странице 156 объясняет, как это обходится.

Я не нашел , как это обходится, точнее нашел, там говорится, что вначале надо найти функции $f^{\alpha}$ , а вот их как раз и не удалось найти и я не уверен, что это можно сделать в любых случаях.

 Профиль  
                  
 
 Re: Вселенная внутри Черной Дыры
Сообщение06.06.2016, 14:05 
Заслуженный участник
Аватара пользователя


23/07/05
17987
Москва
schekn в сообщении #1129439 писал(а):
Действительно не понимаю, как у Вас привязана плоская метрика записанная даже пусть в галилеевых координатах к готовому произвольному решению уравнений Эйнштейна, записанную в каких-то определенных координатах.
Очень просто привязана. Берёте это самое "готовое" решение, и на тех же координатах задаёте метрику Минковского. Или какую хотите другую. И называете её "фоном".
У Грищука объясняется, как привязать плоский фон к произвольному решению так, чтобы условия (15) выполнялись.
Я понимаю, что Вы этого понимать не желаете, потому что единственное "существенное" отличие РТГ от ОТО обращается в прах.

-- Пн июн 06, 2016 14:11:32 --

schekn в сообщении #1129443 писал(а):
там говорится, что вначале надо найти функции $f^{\alpha}$ , а вот их как раз и не удалось найти и я не уверен, что это можно сделать в любых случаях
Ну напишите свою метрику и уравнения, которые получились.

 Профиль  
                  
 
 Re: Вселенная внутри Черной Дыры
Сообщение06.06.2016, 14:22 
Заслуженный участник
Аватара пользователя


28/09/06
10983
schekn в сообщении #1129443 писал(а):
Вообще-то $(t,r)$ - это не синхронные координаты, Вы опять запутались, а стандартные Шварцшильдовские.

1) Шварцшильдовские координаты - синхронные ($g_{0 \alpha} = 0$).
2) Ваши координаты - не Шварцшильдовские, поскольку у Вас есть пыль, а не везде пустота. Но они тоже синхронные.

Вывод: путаетесь Вы.

schekn в сообщении #1129443 писал(а):
Оппенгеймер-Волков (и что то же самое у Вайнберга в главе 11) решают задачу для астрофизических статических объектов именно в данных координатах

На-пле-вать. Речь не о том, в каких координатах кто решает задачу.

schekn в сообщении #1129443 писал(а):
и называют $\rho$ - плотностью

Называть эту величину плотностью не запрещено. Услышьте меня: Плотность пыли - не инвариант, она зависит от выбора системы отсчёта. Если система отсчёта выбрана с особенностью (как у Вас), то особенность будет и у плотности. Это ничего не значит. Если Вы хотите доказать кому-то, что при какой-то плотности пыль должна затвердеть, то Вы должны рассматривать плотность пыли в собственной системе отсчёта пыли.

А Вы сейчас поступаете как дилетант, который даже СТО не понимает и задаёт вопросы типа: "До какой скорости нужно разогнать брусок плутония, чтобы из-за сокращения длины его плотность достигла такой величины, что произойдёт взрыв"?

 Профиль  
                  
 
 Re: Вселенная внутри Черной Дыры
Сообщение06.06.2016, 17:02 
Заслуженный участник


20/08/14
11867
Россия, Москва
schekn в сообщении #1129392 писал(а):
Я не вижу причин, по которым нельзя было бы подобрать соответствующий профиль для давления и получить стабильный массивный объект.
С этим проблем как раз нет, вполне можно - звёзды и планеты тому подтверждение.
Только мне казалось что профиль давления не является исходными данными, а получается из профиля плотности вещества и уравнения его состояния. И разница между красным гигантом и белым карликом (и тем более нейтронной звездой) как раз в последнем, причина давления разная и потому разный профиль давления.

schekn в сообщении #1129443 писал(а):
универсальный закон остановки пыли+ давление
Нет такой сущности, в пыли нет давления, а если есть давление - это уже не пыль. По определению. Более того, задать давление в отрыве от свойств материи - тоже нельзя, нужен механизм образования давления - уравнение состояния. Обычный горячий газ (и плазма) $\mathrm{H}$ и $\mathrm{He}$ может создать далеко не любой желаемый Вами профиль давления.

Получается Вы выдумываете некую сущность и пытаетесь понять может ли она остановить свой коллапс. Разумеется может, смотря как выдумаете. Может даже разлететься на бесконечность - задайте давление обратно пропорционально плотности и наслаждайтесь. :D Вот только чтобы это было хоть чуть-чуть серьёзно, Вы должны предъявить не просто профиль давления и не просто уравнение состояния, а механизм образования давления с нужной Вам зависимостью на базе 3-х известных фундаментальных взаимодействий (без гравитации). Только тогда будет о чём говорить. И скорее всего потребуется ещё и физичность предистории Вашего объекта, чтобы он получался не "с потолка", а из чего-то более-менее реального. И разумеется не называть это пылью!

 Профиль  
                  
 
 Re: Вселенная внутри Черной Дыры
Сообщение06.06.2016, 19:32 


02/11/11
1310
Dmitriy40 в сообщении #1129498 писал(а):
Нет такой сущности, в пыли нет давления, а если есть давление - это уже не пыль. По определению. Более того, задать давление в отрыве от свойств материи - тоже нельзя, нужен механизм образования давления - уравнение состояния. Обычный горячий газ (и плазма) $\mathrm{H}$ и $\mathrm{He}$ может создать далеко не любой желаемый Вами профиль давления.

Получается Вы выдумываете некую сущность и пытаетесь понять может ли она остановить свой коллапс. Разумеется может, смотря как выдумаете. Может даже разлететься на бесконечность - задайте давление обратно пропорционально плотности и наслаждайтесь. :D Вот только чтобы это было хоть чуть-чуть серьёзно, Вы должны предъявить не просто профиль давления и не просто уравнение состояния, а механизм образования давления с нужной Вам зависимостью на базе 3-х известных фундаментальных взаимодействий (без гравитации). Только тогда будет о чём говорить. И скорее всего потребуется ещё и физичность предистории Вашего объекта, чтобы он получался не "с потолка", а из чего-то более-менее реального. И разумеется не называть это пылью!

Удивительно, что такие очевидные вещи приходится настолько тщательно разжевывать человеку, претендующему на какое-то понимание...

 Профиль  
                  
 
 Re: Вселенная внутри Черной Дыры
Сообщение06.06.2016, 19:43 
Заслуженный участник
Аватара пользователя


23/07/05
17987
Москва

(KVV)

KVV в сообщении #1129526 писал(а):
Удивительно, что такие очевидные вещи приходится настолько тщательно разжевывать человеку, претендующему на какое-то понимание...

И не только на понимание, но и на право суда высшей инстанции…

 Профиль  
                  
 
 Re: Вселенная внутри Черной Дыры
Сообщение06.06.2016, 20:04 
Заслуженный участник


20/08/14
11867
Россия, Москва

(Оффтоп)

Удивительно что наверняка понимая все эти вещи, человек упорно игнорирует их для своих вычислений. Делает десятки шагов, погружается в дебри, получает (мягко говоря) "странные" результаты - и валит вину на теорию. :-) А указать на настолько простые причины ошибок ни одному специалисту и в голову не приходит (знаю по собственному опыту в другой сфере). Тут нужен дилетант типа меня! :D

 Профиль  
                  
 
 Re: Вселенная внутри Черной Дыры
Сообщение06.06.2016, 20:35 
Заслуженный участник


09/05/12
25179
 !  По-видимому, предупредительный выстрел в воздух на ТС не подействовал. Думаю, что пора закругляться. Тема закрыта и остается в ПРР только из-за большого числа содержательных сообщений, в которых делались попытки объяснить ТС его ошибки.

schekn - создавать новые темы с аналогичной или близкой тематикой запрещаю. Как показывает опыт, это бесполезно.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 375 ]  На страницу Пред.  1 ... 21, 22, 23, 24, 25

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Google [Bot], Munuvonaza


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group