Прелестно. Вернёмся к верёвке, все части которой покоятся в некоторой ИСО. Что вы назовёте её длиной?
Для веревки у которой все элементы покоятся в некоторой ИСО все время - ее собственная длина равна обычной
Поскольку такая веревка по построению также "твердая" в плоском ПВ (элементы не движутся относно друг-друга в некоей ИСО ее покоя) - результат интегральной собственной длины той же самой веревки
не зависит ни от выбора "момента времени", ни от выбора ИСО (и вообще, любой синхронизированной СО) в которой ведется рассчет. Xотя в других ИСО гиперповерхность t=t_0 с которой берется сечение мирового листа веревки, уже другая.
Это потому, что такой интеграл имеет простой физический смысл - необходимого количества единичных 1-эталонов ("метровых линеек") взаимнонеподвижных к соответнами фрагментами веревки и накрывaющих ее плотно (без перекрытий и зазоров).
Для "твердых" веревок в плоском ПВ (веревок у которых все фрагменты, все время покоятся в некоей ИСО) - это инвариант ("собственная длина") - и равен их обычной длине в их собственной ИСО (т.е. той ИСО в которой они покоятся).
В частности, для открытой прямолинейной "твердой" веревки ("стержня"), покоящейся все время в некоей ИСО - если считать через ИСО' (в которой фрагменты данной веревки движутся с постоянных скоростeй v), получим ту же самую собственную длину:
(тут упрощенная формула в которой как обычно подразумевается что оси ИСО совмещены по той же оси x по которой располагается открытая веревка, и их взаимная скорость v в том же направлении).
-- 12.10.2015, 20:27 --Утундрий: Ниже опять "много букв" - сори, но не хочется снова повторять все "по ложечку" - так что лучше дать заодно ответов на всевозможные будущие вопросы в сконценрированном виде. (предыдущие сообщения где все это было в несколько разрозненном виде, вы очевидно не смотрели и смотреть не будете).
Для конкретного случая замкнутой по кругу веревки вращающейся в ИСО (равномерно, или ускоренно) - см. вторую часть сообщения
post1060266.html#p1060266В самом общем случае деформирующегося тела (фрагменты движутся по-разному со времени, возможно сопутствующая СО не синхронизируема): интегрируется элемент собственной длины фрагментов в их мгновенно-локально-сопутствующих СО
(про смысла обозначений см. например ЛЛ, том 2, 84.6); сам контур интегрирования однозначно выбирается из пересечения глобальной одновременности
выбранной синхронной СО, с "мировым листом" тела в четырехмерии.
Таким образом "собственная длина в момент
" в самом общем случае деформирующихся тел - зависит от выбора гиперповерхности "одновременности"
которая однозначно определяет контур интеграла в 4d. Это вполне нормально, когда элементы веревки меняют свою собственную длину с временем (и учитывая что веревка - протяженное по пространственным измерениям тело).
Единственная моя "отсебятина" (обобщение понятия "собственной длины") - связана со следующим коментаром ЛЛ:
Цитата:
Необходимо, однако, помнить, что зависят, вообще говоря,от , так что и пространственная метрика (84.6) меняется со временем. По этой причине не имеет смысла интегрировать — такой интеграл зависел бы от того, по какой мировой линии между двумя заданными пространственными точками он брался. Таким образом, в общей теории относительности теряет, вообще говоря, смысл понятие об определенном расстоянии между телами, остающееся в силе лишь в бесконечно малом. Единственным случаем, когда расстояние может быть определено и в конечных областях пространства, являются такие системы отсчета, в которых не зависят от времени, и потому интеграл вдоль пространственной кривой имеет определенный смысл. Так вот - для таких общих случаев я просто предлагаю брать интеграл по конкретно выбранном пространственноподобном контуре интегрирования: образованного путем пересечением "мирового листа тела" с пространственноподобной гиперповерхности одновременности некоей конкретно-выбранной синхронной СО (такую всегда можно подобрать).
Так как в таких общих ситуаций "собственная длина тела" уже не инвариант (зависит от контура интегрирования) - нужно конкретизовать контур интегрирования - для определенности, предлагаю говорить про "собственную длину тела
в момент такой-то синхронной СО" (вторая часть включается в понятие - чем и контур однозначно определяется).