manul91, знаете ли Вы,....
Разумеется знаю ; )
То о чем вы написали - это 4-длина любой 4-линии виляющей в четырехмерии и ограниченной с обоих сторон парой 4-точек - событий в 4d (вкл. времениподобной, за учетом знака под корня на соответных участков).
Только лучше не демагогически обозначать ее L, а как-то по-другому - чтобы ясно было что это 4-длина некоей 4-линии в четырехмерии (под интегралом у вас стоит дифф. элемент 4-интервала
) - а не обычное трехмерное расстояние.
Пусть рассматриваем одномерно-пространственный объект - резиновую ленту, которая как-нибудь движется (либо незамкнутую, либо замкнутую в кольцо) в плоском ПВ.
В четырехмерии, мировая резиновой ленты - это 2-поверхность: "2-полоса" в случае если она незамкнута, или "2-трубка" если она замкнута.
И существует бесконечное множество разных пространственноподобных линий, принадлежащие этой полосы/трубки (наклонных, кривых, кудрявых), которые связывают произвольные 4-точки, принадлежащие 2-полосы или 2-трубки (некие события, из мировых линий неких элементов ленты).
У всех этих разных пространственноподобных линий - 4-длина (соответно данной вами формуле) разная.
Даже если дополнительно потребовать, чтобы ваша произвольная пространственноподобная линия связывала края 2-полосы, или была самозамкнутой в случае 2-трубки - таких линий и соответствующие ими 4-длины - тем не менее, бесконечно много.
Поэтому
резиновая лента, замкнутая или не замкнутая - НЕ ИМЕЕТ определенной 4-длины (по меньшей мере, без неких дополнительных ограничений).
-----------------------------------
Теперь внимание, встречный вопрос:
SergeyGubanov в курсе ли вы, что речь НЕ про 4-длин этих всевозможных пространственноподобных линий в четырехмерии (коих бесконечное множество, и у них длины самые разные) - а
про обычных, трехмерных, собственных расстояний/длин?
Элемент интеграла которых, дается ДРУГОЙ формулой
Тоесть впервых, речь идет не просто про координатных длин элементов, а про их собственных длин (в мгновенно-сопутствующих локальных ИСО фрагментов).
Во вторых, т.к. мы хотим охватить и случай нетвердых (деформирующихся с времени) тел - мы по-любому должны брать интеграл этих элементов в моменте
глобальной одновременности какой-нибудь зафиксированной СО (иначе для деформирущихся с времени тел, он будет неопределен).
Если соблюдать обе эти условия, и ошибочно использовать вашу формулу 4-длины для простейшего частного случая: попытки
рассчета собственной длины твердого стержня в момент ИСО в которой он движется со скоростью v: то интегрируя по пространственноподобной линии {
} - мы ошибочно получим его координатную длину с учетом лоренцевого сокращения, а НЕ его собственную длину.
-- 11.10.2015, 21:44 --... тогда продолжать с Вами дискуссию не имеет смысла.
А зачем нам с вами, вообще продолжать дискутировать?
Вы все время демагогически уводите дискуссию от очевидного факта, что ваш "метод" не дает однозначной собственной длины периферии ускоренной карусели (для глобальной одновременности
по хоть какой-либо СО) (последнее потверждение недобросовестности - вместо ясного ответа как однозначно устранить неопределенность выбора конкретной 4-линии для вашей длины - невпопад задаете встречные вопросы типа "знаете ли что.." и пр.)
Что предлагает ваш "метод"?Вычисление 4-длины некоей пространственноподобной линии из 2-трубки периферии в 4D, для которой имеет место:
а) разомкнута (ее конец в 4d не совпадает с ее начала), хотя и обходит 2-трубку пересекая мировые линии фрагментов только один раз - и заканчивается на мировой линии того же фрагмента от которого и начала (только в другом моменте его собственного времени). В частности из-за этой разомкнутости, собственные длины двух бесконечно близких фрагментов вокруг размыкания, берутся в конечно-разных моментов их собственного (sic!) времени.
б) ее елементы трансверзальны мировых линий фрагментов периферии (единственное "хорошее" качество - и означающее что если этой самой линии определить однозначно - то интеграл 4-длин ее элементов будет иметь смысл собственной длины)
в) начинается неизвестно-с-какого события-точки на трубке, и обводится вокруг трубки в неизвестно-каком из двух возможных направлений (соответно выбор этой разомкнутой линии не просто неопределен, а неопределен "в квадрате")
г) Брать интегральную длину, этой неизвестно-как-точно выбранной разомкнутой пространственноподобной линии
Я со своей стороны, предлагаю:а) Пересечь 4-d трубку периферии с некоей глобальной пространственноподобной гиперповерхности одновременности
какой-нибудь синхронизированной СО (например ИСО).
б) Таким образом, мы получим самозамкнутую пространственноподобную линию вокруг трубки соответствующую
в) Интегрировать НЕ элементы 4-длины этой линии (и соответно НЕ находить ее интегральную 4-длину), а
использовать ее как контур интегрирования для собственной длины элементов/фрагментов периферии на данном контуре (эти собственные элементы длины фрагментов dl, которые интегрируются по данном контуре - ортогональны элементов ds мировых линий фрагментов в 4d).
г) Поскольку контур по котором интегрируются собственные длины элементов замкнут - собственные длины любых двух бесконечно-близких соседних фрагментов, берутся также и в бесконечно близких моментов их собственного времени
д) Получаем вполне определенную величину (определены как конкретный контур интегрирования, так и подинтегральная величина) - имеющей смысл интегральной собственной длины, в определенном моменте
в так выбранной СО
Для случаев твердых тел (недеформирующихся тел/ободов, или вращающегося равномерно обода) - оба метода, мой и ваш - дают одно и то же.
Но в этих простейших случаев, вам просто везет - хотя и вашу линию по-прежнему можно строить по-разному в 4d вокруг трубки - этот произвол выбора линии, к счастью не сказывается на величиной вашего интеграла.
Для случаев деформирующихся-движушихся в 4d тел/ободов - мой интеграл в котором всегда однозначны как контур интегрирования так и подинтегральная величина - дает вполне однозначную величину (я также расписал, его конкретный физическо-инженерный смысл).
А ваш интеграл, чтобы понятно было как однозначно вычислять в нетривиальном случае - как минимум нуждается в дополнительных (хотя и произвольных!) ограничений для выбора конкретной 4-d линии.
Я не вижу смысла далее с вами дискутировать, по меньшей мере пока вы не предложите что-то существенно новое (кроме демагогии, встречных вопросов и пр.).