Еще один способ вычисления функции от матриц. Для простоты предположим, что все собственные числа различны:

. Тогда для любой функции

, аналитической в окрестности спектра матрица

, будет выполнено

где

-- некоторые фиксированные матрицы (одни и те же для любой функции

), называемые компонентами матрицы

. Подставляя конкретные функции, например,

,

,

и т.д., получим систему линейных уравнений для

, откуда их можно найти.
Например, в рассматриваемом случае у нас три собственных значения

, где

. Следовательно

При

получаем уравнение

. При

получаем уравнение

. При

получаем уравнение

. Из этих уравнений находим

, и

.