2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1 ... 4, 5, 6, 7, 8, 9  След.
 
 Re: Парадокс близнецов в условиях ускорения-торможения
Сообщение13.02.2015, 22:20 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Kosterik
Если в сможете "измерить" некую "величину", которая у близнецов совпадает -- то это будет не время. Вот и все. И причем тут ГГц какие-то?
На вопрос отвечать не хочу: все жевано-пережевано. Чем ваш эксперимент отличается от классического? Может, из "центрального передатчика" близнеца облучают, чтобы постарел? :mrgreen:

 Профиль  
                  
 
 Re: Парадокс близнецов в условиях ускорения-торможения
Сообщение13.02.2015, 22:33 


06/12/14

617
Munin в сообщении #977935 писал(а):
Всё ещё непонятно: почему вы считаете ошибающимися толпы людей, которые знают и владеют теорией лучше, чем вы?

(выделено мной)
Наверно опять я сел в лужу с термином. Термин "ошибся" тут не применим.
Вот если я пошел в обменник зная (точнее веря экономической теории) что курс руб/$ = 60, а придя в обменник увидел что курс =70, то вот тут я ошибся.
А мы разговариваем тут о вещах гипотетических, типа "есть ли жизнь на Марсе?" :D
В общем в данном случае уместен был бы термин "заблуждаются в вере своей". Потому как о настоящих надежных знаниях проверенных эмпирикой тут не может быть даже и речи.

Munin в сообщении #977935 писал(а):
Задача близнецов очень простенькая.

Повторю свою мысль - не существует задачи (проблемы) близнецов на сегодняшний момент. По простой причине - кто бы во что не верил, но проверить это мы технически не можем.
 !  whiterussian:
Предупреждение за злостное невежество!



В данной теме я лишь пытался (ну, позже, когда графики показаний самописцев-счетчиков нарисую) синтезировать в целое теорию и практику. И этим синтезом доказать (себе в первую очередь), что все кто верят что в данном случае из звездолета выйдет молодой румяный брюнет брат-близнец, и обнимет своего седого брата-близнеца - они ошибаются. (ну или я ошибаюсь)

Да и вообще, надеюсь, Вы же не будете спорить, что вот весь этот "парадокс близнецов" есть лишь часть интерпретации самой теории, причем даже не вспомогательная (полезная), а развлечение (баловство). И даже если окажется что это не так, что этого (гипотетического) парадокса даже быть не может - разве от этого теория Эйнштейна потеряет хоть грамм своей устойчивости?

 Профиль  
                  
 
 Re: Парадокс близнецов в условиях ускорения-торможения
Сообщение13.02.2015, 22:34 
Заслуженный участник


20/07/09
4026
МФТИ ФУПМ
Kosterik в сообщении #977948 писал(а):
Да и вообще, надеюсь, Вы же не будете спорить, что вот весь этот "парадокс близнецов" есть лишь часть интерпретации самой теории, причем даже не вспомогательная (полезная), а развлечение (баловство).
В Пургаторий. :arrow: Голосую.

 Профиль  
                  
 
 Re: Парадокс близнецов в условиях ускорения-торможения
Сообщение13.02.2015, 22:35 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Nemiroff в сообщении #977949 писал(а):
В Пургаторий. :arrow: Голосую.

Аналогично. Щас пожалуюсь модерам.

-- 13.02.2015, 22:38 --

Если я применю математическую теорию к головоломке, то она (теория) может и не выполниться. А чего? это же так, баловство. В военное время значение синуса может достигать 4.

 Профиль  
                  
 
 Re: Парадокс близнецов в условиях ускорения-торможения
Сообщение13.02.2015, 22:48 
Заслуженный участник


29/11/11
4390
Kosterik в сообщении #977942 писал(а):
Подмечу - пока еще даже с этим примитивом не ясно. Нет однозначного ответа.


есть совершено однозначный ответ. на часах землянина прошло $t_2 - t_1$, на часах летчика прошло $\int_{t_1}^{t_2} \sqrt{1-v(t)^2/c^2} dt$. это универсальный закон, вы в него можете подставить хоть постоянную скорость $v(t) = 0.99c$, хоть ускоренное движение $v(t) = a t$ хоть переменную скорость движения по эллиптической орбите кепплера.

 Профиль  
                  
 
 Re: Парадокс близнецов в условиях ускорения-торможения
Сообщение13.02.2015, 22:56 


06/12/14

617
Munin в сообщении #977940 писал(а):
Kosterik в сообщении #977909
писал(а):
Нет, есно. Эмпирика нам пока недоступна, технически человечество к ней неготово.
Вообще-то эксперименты поставлены давным-давно. Например, эксперимент Хафеле-Китинга в 70-е годы.

читаю в вики -
В октябре 1971 года Дж. Хафеле (J. C. Hafele) и Ричард Китинг (Richard E. Keating) дважды облетели вокруг света, сначала на восток, затем на запад, с четырьмя комплектами цезиевых атомных часов, после чего сравнили «путешествовавшие» часы с часами, остававшимися в Военно-морской обсерватории США (ВМО США).
разве я недостаточно ясно высказался ранее? -
Kosterik в сообщении #977900 писал(а):
Здесь мы говорим исключительно о ПРЯМОЛИНЕЙНОМ движении.
Посему предлагаю разделить поиски "теория Эйнштейна и парадокс близнецов" на два обособленных случая:
1. прямолинейного движения (то, о чем здесь в теме говорим)
2. криволинейного движения (то, о чем, если дойдут руки, мы поговорим позже и в другой теме)

(выделил специально)
Или что, для Вас, Мунин, прямая линия и окружность стали одним и тем же? а что, гравитация планеты (переход в область ОТО), исключенная в этом моём мысленном межзвездном эксперименте, уже стало частью обсуждаемой темы?
Как раз тот случай, когда поговорить в теме хотелось чисто про СТО, причем исключительно о её маленькой (побочной, больше развлекательной) части которая называется "парадокс близнецов".

Munin в сообщении #977940 писал(а):
...а формул вообще даже не начинали писать.

а о каких формулах идет речь? зачем они мне? я ограничился приборами счетчиками-самописцами:
Kosterik в сообщении #977541 писал(а):
6. Все TX и RX снабжены накопительными счетчиками периодов колебаний (соответственно TX излученных, RX принятых). Эти счетчики выполняют в эксперименте роль обычного секундомера (часов). Учитывая п.1 и п.4 можно заранее смело сказать, что за 4 года при частоте 5ГГц ими будет насчитано ровно 6,3*10^17 колебаний.

Посему все очень просто - либо по прилету звездолета на землю (финиш) на обоих самописцах (RX-1 и RX-2) будут одинаковое число (=6,3*10^17), а значит предсказания (интерпретация СТО для данного конкретного случая) ошибочны, либо числа будут разное (на RX-1 больше чем на RX-2), и тогда ваша правда. :D

 Профиль  
                  
 
 Re: Парадокс близнецов в условиях ускорения-торможения
Сообщение13.02.2015, 22:58 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Kosterik в сообщении #977957 писал(а):
Посему все очень просто - либо по прилету звездолета на землю (финиш)
Летите уже. А мы не Земле подождем результата.

 Профиль  
                  
 
 Re: Парадокс близнецов в условиях ускорения-торможения
Сообщение13.02.2015, 23:03 


06/12/14

617
Nemiroff в сообщении #977949 писал(а):
В Пургаторий.

provincialka в сообщении #977950 писал(а):
Аналогично.

о как! а я даж еще считать не начал, только только эксель настроил :cry:
Обидно.
Ведь конкретная числовая задача, тот самый случай когда формулы теории можно облечь в конкретные числа.
А вы меня за борт. :facepalm:

За что? :roll:

 Профиль  
                  
 
 Re: Парадокс близнецов в условиях ускорения-торможения
Сообщение13.02.2015, 23:10 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Kosterik в сообщении #977961 писал(а):
А вы меня за борт. :facepalm:

За что? :roll:

Как за что? Ясно же было сказано: за
Kosterik в сообщении #977948 писал(а):
развлечение (баловство).

 Профиль  
                  
 
 Re: Парадокс близнецов в условиях ускорения-торможения
Сообщение13.02.2015, 23:17 


06/01/15
166
Kosterik в сообщении #977961 писал(а):
о как! а я даж еще считать не начал, только только эксель настроил


Я предполагаю, что вопрос не в замедлении времени как таковом, а в "равноправии систем отсчёта". В Вашем эксперименте СО ракеты при ускорении изменяет свою СО. В ней время реально замедляется и брат-космонавт реально стареет медленнее.

А если изменить эксперимент.
Если две ракеты в одинаковом режиме стартуют в противоположные стороны , летят одинаковое количество парсеков, разворачиваются и возвращаются обратно на Землю.
СО этих ракет движутся относительно друг друга, но они реально равноправны и поэтому на финише должны показать одинаковое время. ...одинаково отстать от земного.......Логично?

 Профиль  
                  
 
 Re: Парадокс близнецов в условиях ускорения-торможения
Сообщение13.02.2015, 23:23 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Dobrus в сообщении #977970 писал(а):
В Вашем эксперименте СО ракеты при ускорении изменяет свою СО.
Сама себя меняет, что ли? Получается, что у СО есть еще своя СО.
Лучше скажите, что СО, связанная с ракетой не инерциальна.

 Профиль  
                  
 
 Re: Парадокс близнецов в условиях ускорения-торможения
Сообщение13.02.2015, 23:30 


06/01/15
166
provincialka в сообщении #977974 писал(а):
Сама себя меняет, что ли?
Перед стартом ракета находится в ИСо Земли.
После старта ракета разгоняется, набирает скорость. На этом этапе она уже не в ИСО земли. Правильно? Она её "меняет" на другую.

 Профиль  
                  
 
 Re: Парадокс близнецов в условиях ускорения-торможения
Сообщение13.02.2015, 23:34 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Kosterik в сообщении #977948 писал(а):
Повторю свою мысль - не существует задачи (проблемы) близнецов на сегодняшний момент.

Задача есть. "Задача" в таком же смысле, в каком есть другие задачи в физике: задача маятника, задача Кеплера, задача расчёта энергии при нагреве вещества.

Для этой задачи очень простой расчёт.

Kosterik в сообщении #977948 писал(а):
По простой причине - кто бы во что не верил, но проверить это мы технически не можем.

Вы - технически не можете. Хафеле и Китинг проверили это ещё в 1971 году. И стоило это им всего 7600 долларов.

Kosterik в сообщении #977948 писал(а):
Да и вообще, надеюсь, Вы же не будете спорить, что вот весь этот "парадокс близнецов" есть лишь часть интерпретации самой теории

Не буду спорить, потому что это полная чушь. Каждый, кто знает теорию, знает, что это не так. О чём тут спорить? Вы хотите настаивать, что $2\times 2\ne 4$? Тут ответ один: идите почитайте учебники.

Kosterik в сообщении #977957 писал(а):
а о каких формулах идет речь? зачем они мне?

Затем, чтобы не выдумывать ответ, а вычислить его правильно.

Но если вы не понимаете, что это вообще не место для фантазий - то странно, что вы вообще делаете в разделе "Помогите решить / разобраться".

Kosterik в сообщении #977961 писал(а):
Ведь конкретная числовая задача, тот самый случай когда формулы теории можно облечь в конкретные числа.

Шизофрения какая-то. То вам формулы не нужны, то вы именно формул и хотите.

-- 13.02.2015 23:38:06 --

Dobrus в сообщении #977976 писал(а):
Перед стартом ракета находится в ИСо Земли.
После старта ракета разгоняется, набирает скорость. На этом этапе она уже не в ИСО земли. Правильно? Она её "меняет" на другую.

Неправильно. ИСО - это не "ящик".

Правильно говорить, что перед стартом ракета неподвижна в ИСО Земли. Потом она разгоняется, и уже не неподвижна в ИСО Земли. Но можно по-прежнему рассматривать её в ИСО Земли.

Когда ракета разогналась, она стала неподвижной в какой-то другой ИСО - ИСО*. Но её и раньше можно было рассматривать из ИСО*. Просто раньше ракета двигалась с точки зрения ИСО*.

 Профиль  
                  
 
 Re: Парадокс близнецов в условиях ускорения-торможения
Сообщение13.02.2015, 23:41 
Заслуженный участник
Аватара пользователя


18/01/13
12065
Казань
Dobrus в сообщении #977976 писал(а):
На этом этапе она уже не в ИСО земли. Правильно? Она её "меняет" на другую.
ИСО меняет не ракета, а мы. Это просто та или иная точка зрения. Не скажете же вы, что при взлете ракета "переходит в другую точку зрения".

 Профиль  
                  
 
 Re: Парадокс близнецов в условиях ускорения-торможения
Сообщение13.02.2015, 23:41 


06/12/14

617
Dobrus в сообщении #977970 писал(а):
В Вашем эксперименте СО ракеты при ускорении изменяет свою СО. В ней время реально замедляется и брат-космонавт реально стареет медленнее.

(выделено мной)
У Вас в мысли пропущен ключевой момент (относительно брата на Земле) - его брат-космонавт стареет медленнее лишь когда звездолет УДАЛЯЕТСЯ от Земли-А; а вот когда звездолет возвращается домой, т.е движется от Земли-Б к Земле-А, то его брат-космонавт СТАРЕЕТ БЫСТРЕЕ. И в результате на точке финиша на Земле-А из звездолета выходит точно такой-же возрастом брат-близнец, как и тот что оставался все время миссии (эксперимента) на земле, т.е они как были ровесниками по годам до старта миссии, так и остались ровесниками после её окончания.
я ведь и не собирался отрицать что когда братья находятся на удалении, т.е один брат на Земле-А, а звездолет уже где-то подлетает к Земле-Б, то можно смело сказать - брат на Земле-А старше (старее) чем чем брат в звездолете (моложе). Они НЕ ровесники! Т.е эффект - есть. Но вот когда обратный путь, то эффект сводится к нулю, на обратной дороге всё компенсируется, и по финишу они опять ровесники.

Но, самое смешное, что я хочу доказать (проверить) этой темой - вот мы гоняем звездолет на скорости околосветовой (0,998с у меня в расчета), и списываем эффект именно что на эту высокую (а ОТНОСИТЕЛЬНО ЧЕГО высокую-то?) скорость; но есть (моё) мнение, будь у нас братья долгожители (жили бы по 1000лет), то если бы мы даже гнали звездолет с маленькой скоростью (например 0,1с), то эффект (разница в возрасте братьев в момент когда один на Земле-А, а другой подлетает к Земле-Б) - был бы по значению ТОЧНО ТАКИМ ЖЕ. (т.е "околосветовая скорость" вообще не имеет отношения к эффекту, а эффект зависит лишь расстояние между Земля-А и Земля-Б).

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 127 ]  На страницу Пред.  1 ... 4, 5, 6, 7, 8, 9  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group