Если взять аналогию про языки, получается, что ТО одинаково верными считает оба варианта ПВ? Хочешь, можешь считать так, хочешь по другому... Оба варианты верны. Я правильно вас понял?
Да.
Потому что эти "варианты" никак не отражаются в "ядре" математической модели ТО (кстати, всё-таки моветон говорить по "ТО" как про нечто одно целое - это две совсем разные теории, СТО и ОТО; но с учётом конкретного вашего вопроса, наверное, можно).
Я думаю, этот момент надо оговорить подробнее.
Мы со школы привыкли, что если в уравнении что-то перенести из левой в правую часть, или наоборот, или уравнение как-то умножить, поделить, и т. п., - то это, в принципе, останется то же самое уравнение. Нет смысла различать уравнения
и
Хотя формально, это разные строчки символов, и отличаются между собой на
тождественное преобразование, но для нас в уравнении самое интересное - его решения. А решения здесь совпадают.
(Разумеется, бывают и нетождественные преобразования, которые могут терять решения, или порождать лишние решения. Но не будем отвлекаться на этот нюанс.)
Что значит "решения совпадают"? Это значит, что в пространстве всех возможных значений всех трёх переменных
отмечены какие-то точки, которые удовлетворяют этому уравнению. И эти точки - одни и те же для разных записей уравнения. Как мы можем искать эти точки? Мы можем задать какое-то значение переменным
и
и искать переменную
как неизвестную. А можем иначе, положить
и
какими-то заданными, и искать
А можем зафиксировать только
и считать, что решение нашего уравнения - это новое уравнение, связывающее между собой
и
а какой-то одной определённой пары значений зафиксировано не будет. Всё равно, всеми этими способами мы будем говорить об одних и тех же решениях - об одних и тех же точках в пространстве
Теперь посмотрим на несколько более сложный случай. Дифференциальное уравнение. Скажем, вида
- второго порядка, как 2 закон Ньютона - это довольно типичный случай в физике. Это уравнение не на числа, а на функции. Его решение - какая-то функция
Но по сути, функцию можно представить себе как бесконечно много чисел, то есть, решение уравнения - это тоже какая-то точка в пространстве, только в бесконечномерном. Точнее, точки, много точек. И эти точки тоже можно "разглядывать" в разной перспективе. Наиболее интересно для практики выбрать такую перспективу, чтобы осталось однозначное решение - чтобы из известных переменных можно было выразить неизвестные переменные так, чтобы каждая неизвестная переменная имела только одно значение. Такие перспективы (их много) называются
задачами на дифференциальное уравнение (или более длинно,
постановками задач...).
Одной из самых употребительных на практике является
задача Коши. Она устроена так: мы в какой-то момент времени
задаём
начальные условия (на одно меньше, чем всего производных в уравнении - чтобы одну производную всё-таки по уравнению вычислить). И дальше "загружаем" их в уравнение, "запускаем" его, и оно работает как программа: сначала выдаёт нам решение - напоминаю, функцию
- немного правее
потом ещё немного правее, потом дальше, дальше, и так в итоге - на все значения
до бесконечности. Эта задача часто имеет такой прикладной смысл: мы знаем начальное состояние какой-то системы (начальные условия), и знаем внутренние законы этой системы (дифференциальное уравнение), и из этого можем рассчитать, что с системой произойдёт в будущем. В науке это будет предсказанием, например, какого-то эксперимента. В технике это будет расчётом работы какого-то устройства.
Но тут надо обратить внимание, что законы системы - это не вся задача Коши, а только дифференциальное уравнение. Для него можно поставить и другую задачу. Например, можно ту же самую задачу Коши "развернуть задом наперёд": задать условия в какой-то момент времени, но назвать их уже не начальными, а конечными, а расчёт вести по направлению влево,
в прикладном смысле в прошлое. Тогда часто оказывается, что мы можем понять, что привело к тому состоянию, в котором сейчас система находится. Теперь смотрите, есть какой-то промежуток времени
Мы можем рассчитать, что в нём происходило, и начиная с начального момента вперёд (и посчитать в том числе и состояние к концу промежутка), и начиная с конечного момента назад (и посчитать состояние к началу). То есть, в пространстве переменных (функций) - мы можем брать за заданные либо одни переменные, либо другие. Можем выбрать и "компромиссный вариант": зададим некоторые значения на одном конце промежутка, а некоторые - на другом. Например, зададим в начале промежутка
значение
а в конце промежутка - значение
и будем искать такую функцию на промежутке, которая будет удовлетворять таким значениям. Можем? Можем. Оказывается, часто такая задача (
краевая задача, или
граничная) тоже будет иметь решение. Правда, мы уже не можем решать его, продвигаясь "маленькими шажками" от одной начальной точки, а должны двигаться другими методами. Но это уже математические детали.
Что это означает на практике? Это означает, что вопрос "а что будет в будущем с системой" - это один частный способ использования законов системы. Система существует сама по себе, её законы существуют сами по себе - а вот вопрос "мы знаем сейчас, что будет в будущем?" - он не вытекает из этих законов, он просто вытекает из наших потребностей и интересов, что мы обычно имеем "на руках", и что хотим спросить. Мы можем задаться и другими интересами, например, посмотреть в целом на какой-то эксперимент от начального момента времени до конечного момента времени, и спросить, а что происходило в промежутке. Особенно если в начале мы что-то можем приготовить, в конце - проанализировать остатки, а детально наблюдать за процессом мы не можем. После того, как мы провели такой эксперимент, мы можем думать про него, что он "уже весь есть целиком", в прошлом, и задавать для него разные типы вопросов: это известно, а то надо вычислить, или наоборот. А эксперимент не знает, что мы такие вопросы задаём, он просто происходил по законам природы (по дифференциальному уравнению), и всё тут.
Так что, "ядром" математического аппарата теории являются именно дифференциальные уравнения сами по себе. Их решения - про них можно думать, что они существуют целиком. А можно строить последовательно из прошлого в будущее. А можно строить как-то ещё иначе. Но эти все способы рассмотрения - они самих дифференциальных уравнений не меняют, они только используют их по-разному.
Здесь же, к слову, можно упомянуть и то, чего не понимает
vlapay. Дифференциальные уравнения - штука чаще всего обратимая по времени. Как можно решать задачу Коши вперёд в будущее, так же её можно решать и назад в прошлое. А это значит, что в дифференциальном уравнении нет причин и следствий. Можно потянуть за одну ниточку, и тогда она станет причиной, а всё, что за ней вытянется, - следствием. А можно потянуть за другую ниточку, и тогда наоборот, уже другой конец истории будет причиной, а то, что раньше было причиной, обернётся следствием. Но эти "причины и следствия" - в чисто вычислительном смысле, а не в жизненно-философском, а жизненно-философских причин и следствий тут вообще нет. Раз всё со всем однозначно связано, то разве можно решить, что из всего настоящая причина, а что нет? Можно было бы спросить подсказку у направления времени - что раньше, то и причина. Но мы знаем, что и направление времени - это (во многом) просто результат нашего выбора для нашего удобства. В самих дифференциальных уравнениях принципа причинности нет. И оказывается, что самые фундаментальные законы физики, которые мы знаем, - это как раз дифференциальные уравнения как раз такого типа. Это просто факт, его надо прочитать в учебнике, и его надо знать. С ним не поспоришь, это так, и всё тут. Единственно, что можно закрыть глаза, уши, мозги, как
vlapay, и продолжать твердить "я ничего не знаю, я вам не верю, это неправда, это всё сказки". Такие люди предпочитают жить в мире с Дедом Морозом, и считать, что это не сказки, а мир без Деда Мороза (и на самом деле, в тысячу раз более интересный) - для них сказки. Ну что ж тут поделаешь, если человек выбирает жить невеждой - это его жизненный выбор, можно только постараться, чтобы он не мешал своим невежеством другим людям - попросить модератора его забанить.
-- 12.11.2014 16:56:19 --P.S. Раз уж я тут вступил в дискуссию. Существуют ли учебники по ОТО, где по максимуму используются ПВ диаграммы? Обычно про ПВ диаграммы в ОТО вспоминают только при описании черных дыр, и то всего в паре-тройке книг встречал. Т.е. хотелось бы узнать про учебник по ОТО с максимальным упором на визуализацию.
Прежде всего, очень хороший учебник, который я вообще рекомендую в первую очередь,
Мизнер, Торн, Уилер. Гравитация.Он вообще очень наглядный и иллюстративный, там не только пространственно-временные диаграммы используются (не люблю самодельных аббревиатур, тем более без пояснений), но и, например, объясняются понятия дифференциальной геометрии, и логические взаимосвязи в теории.
Кажется, довольно неплохо с этим в задачнике
Лайтман, Пресс, Прайс, Тюкольски. Сборник задач по теории относительности и гравитации.Без рисунков не обойтись при объяснении сложных концепций, так что они есть в теоретических книгах Хокинга, Пенроуза. Назову для примера:
Хокинг, Эллис. Крупномасштабная структура пространства-времени.Пенроуз. Структура пространства-времени.Пенроуз. Путь к реальности.Ну и пожалуй, раз уж вы упомянули чёрные дыры,
Новиков, Фролов. Физика чёрных дыр.