Простите, а вы знаете, что в физическом смысле показывает спидометр? Именно
Да, разумеется. Но измеряет-то он производную, просто с погрешностью.
Хорошо. Вопрос: как дать понятие производной, используя понятие непрерывности, но не используя понятие предела?
Производная – это следующий шаг. Я не говорил, что не буду использовать предел. Но я считаю определение с пределом проще, чем с равномерно липшицевой оценкой. Потому что в физике уже есть понятие "мгновенная скорость в точке", а понятия "мгновенная скорость сразу во всех точках, удовлетворяющая липшицевой оценке" нет.
То, что мгновенная скорость в физике – это средняя скорость на достаточно малом интервале, а не на бесконечно малом, – это другой вопрос, к конструкциям
mishafromusa не имеющий отношения. Просто с бесконечными величинами проще работать, чем с конечными. С пределами проще работать, чем следить за явными оценками. Это абстракция,
упрощающая дело.
Ну вот не надо подменять понятия.
Любой ребёнок отличит график непрерывной функции от графика функции, непрерывной всюду кроме разрыва 1 или 2 рода.
Не понял, в чём подмена понятий. Понятие непрерывности абсолютно интуитивно и приходит в голову значительно раньше, чем человек узнает о пределах.
Всё-таки, это уровень начальных классов для "довольно хороших" примеров. А изучение "патологий" и контрпримеров - уже сложно.
Да, класс "довольно хороших" примеров шире элементарных функций. Но он и у́же того, за что вы ратуете. Формализовать его - задача непростая и неоднозначная. Модуль может как попасть в него, так и не попасть.
Важен тот факт, что можно нарисовать мелом на доске любую кривую (ну, допустим, однозначно проецирующуюся на
), и она будет графиком функции. Или наставить любых точек. Я против того, чтобы считать, что, кроме элементарных, других функций нет или что любая функция задается формулой. Этот момент был очень важным в истории и привёл к современному анализу.
Разумеется, функции должны быть "довольно хорошими". И важным моментом также было понимание того, что "довольно хорошая" – это аналитическое свойство, а не алгебраическое.