2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4, 5  След.
 
 А можно задать глупый вопрос?
Сообщение12.01.2013, 22:20 
Аватара пользователя
Давно уже интересно. Значение выражения $(\pi \cdot 10^\infty)$ принадлежит множеству целых чисел или всё же является иррациональным числом? :)

Извините, если вопрос идиотский.

 
 
 
 Re: А можно задать глупый вопрос?
Сообщение12.01.2013, 22:37 
Denis Russkih в сообщении #670885 писал(а):
Значение выражения $(\pi \cdot 10^\infty)$ принадлежит множеству целых чисел или всё же является иррациональным числом? :)

Нет, вопрос далеко не идиотский. Правильный ответ: это вообще не число.

 
 
 
 Re: А можно задать глупый вопрос?
Сообщение12.01.2013, 22:46 
ewert,
просто у ТС в формуле восьмёрка как-то нечаянно перевернулась.

Очевидно же, что ни $\pi\cdot10^{{}^\rotatebox{-90}{6}}$, ни $\pi\cdot10^{{}^\rotatebox{-90}{7}}$, ни $\pi\cdot10^{\displaystyle{\infty}}$, ни $\pi\cdot10^{{}^\rotatebox{-90}{9}}$ целыми числами не являются. Отчего вообще такой вопрос возник? Пи, вообще, известно до очень многих знаков после запятой. Погуглите.

 
 
 
 Re: А можно задать глупый вопрос?
Сообщение12.01.2013, 22:59 
Аватара пользователя
ewert, большое спасибо за ответ!

Алексей К., хорошая шутка. :) И благодарю за классный способ переворачивать написанное. Не знал такого.

Но должен заметить, когда-то и корень из отрицательного числа считался бессмыслицей. А потом его признали числом.

Как знать, может, я просто поторопился с вопросом на сотню-другую лет?.. :)

 
 
 
 Re: А можно задать глупый вопрос?
Сообщение12.01.2013, 23:05 
Denis Russkih в сообщении #670901 писал(а):
Не знал такого.
Ну, Вы, похоже, пока вообще мало чего знаете. Но ничего, с возрастом, глядишь, накопится.
Правильным словам про бесконечности я тоже, кажется, только на форуме научился.

 
 
 
 Re: А можно задать глупый вопрос?
Сообщение12.01.2013, 23:10 
Аватара пользователя

(Оффтоп)

Алексей К., да уж, те две темы будут мне ещё долго аукаться. :) Теперь, когда меня одолеет мания величия, буду заходить туда — и мозг сразу будет прочищаться.

 
 
 
 Re: А можно задать глупый вопрос?
Сообщение01.02.2013, 14:51 
ewert в сообщении #670891 писал(а):
Правильный ответ: это вообще не число.

А кто виноват? $\pi$, $10$ или $\infty$. :shock:
С уважением.

 
 
 
 Re: А можно задать глупый вопрос?
Сообщение01.02.2013, 14:58 
Аватара пользователя
Denis Russkih в сообщении #670885 писал(а):
Давно уже интересно. Значение выражения $(\pi \cdot 10^\infty)$ принадлежит множеству целых чисел или всё же является иррациональным числом? :)
Извините, если вопрос идиотский.

Наводящий вопрос. Значение выражения $(2 \cdot 10^\infty)$ принадлежит множеству целых чисел?

 
 
 
 Re: А можно задать глупый вопрос?
Сообщение01.02.2013, 14:59 
Аватара пользователя
Denis Russkih в сообщении #670901 писал(а):
Но должен заметить, когда-то и корень из отрицательного числа считался бессмыслицей. А потом его признали числом.

Пока числом его не признали. Множеством комплексных_чисел - да.

 
 
 
 Re: А можно задать глупый вопрос?
Сообщение01.02.2013, 19:48 
Аватара пользователя
Александрович в сообщении #678796 писал(а):
принадлежит множеству целых чисел?

Нет, но они к нему стремятся.

 
 
 
 Re: А можно задать глупый вопрос?
Сообщение01.02.2013, 20:58 
Аватара пользователя
Александрович в сообщении #678796 писал(а):
Denis Russkih в сообщении #670885 писал(а):
Давно уже интересно. Значение выражения $(\pi \cdot 10^\infty)$ принадлежит множеству целых чисел или всё же является иррациональным числом? :)
Извините, если вопрос идиотский.

Наводящий вопрос. Значение выражения $(2 \cdot 10^\infty)$ принадлежит множеству целых чисел?

Я уже понял, что такие числа вообще не считаются числами. :) Хотя, если честно, так и не понял, почему.

Например, мне кажется вполне очевидным, что:

а) $1^\infty = 1$

б) $0^\infty = 0$

И я никак не могу отделаться от этого чувства. :)

Ну да, согласен, все прочие действительные числа, будучи возведёнными в бесконечную степень, имеют только начало и не имеют окончания записи, "хвостика", т.е. напоминают не отрезок, а луч. Но с каких пор подобные мелочи стали смущать математиков?.. :) Главное, чтобы с такими числами можно было работать, т.е. чтобы они подчинялись определённым правилам, имели некие присущие им свойства. Такие свойства вполне можно найти.

Например, очевидно, что число $a^\infty$, где $a \in \mathbb{N}$ будет содержать в своём разложении только те простые множители, которые присутствуют в разложении числа $a$. Другим простым множителям там взяться неоткуда. Значит, если натуральные числа $a$ и $b$ взаимно простые, то $a^\infty \neq b^\infty$. И т.д.

Насколько мне известно, лишь модуль целого числа можно разложить на простые множители. Этот факт по-своему роднит наши "трассирующие" числа с целыми.

(Я окрестил их "трассирующими" потому, что такое число невозможно рассматривать в качестве точки на числовой прямой, - скорее это череда точек, где число "присутствует" с равной вероятностью. Чем-то напоминает электронное облако... Может, трассирующие числа были бы полезны при описании подобных объектов? :) Глупость, конечно, но вдруг?)

Также выглядит очевидным, что в разложении "трассирующего" числа $2^\infty$ присутствует лишь число 2, а значит, это число при некоторых оговорках можно рассматривать как чётное. (Или "трассирующее чётное".) И точно так же, число $3^\infty$ определённо является нечётным, каким бы бесконечно большим оно ни было.

Из этого можно сделать ещё пару интересных выводов:

$(-1)^{2^\infty} = 1$

$(-1)^{3^\infty} = -1$

Также напрашивается мысль, что из трассирующего числа можно получить действительное число, если извлечь из него бесконечный корень:

$\sqrt[\infty]{2^\infty} = 2$

И так далее, и тому подобное...

Конечно, я в математике всего лишь чайник-любитель, и сужу с абсолютно дилетантских позиций. Поэтому я просто изложил свои предположения, которые отнюдь не претендуют на звание "абсолютной истины".

Буду очень признателен, если мне разъяснят, в чём конкретно я ошибаюсь. (В какой именно момент моя мысль пошла по ложному пути? Очень интересно.)

 
 
 
 Re: А можно задать глупый вопрос?
Сообщение01.02.2013, 21:00 
Аватара пользователя
Denis Russkih, вы изучали математический анализ в объёме первого семестра?

 
 
 
 Re: А можно задать глупый вопрос?
Сообщение01.02.2013, 21:04 
Аватара пользователя
Aritaborian

Я думаю, мои идиотские вопросы говорят сами за себя. :) Если бы я хоть что-то знал из математики, то, наверное, задавал бы вопросы поумнее.

 
 
 
 Re: А можно задать глупый вопрос?
Сообщение01.02.2013, 21:13 
Denis Russkih в сообщении #678962 писал(а):
$\sqrt[\infty]{2^\infty} = 2$

Т.к. в математике я ещё более велик, то не объясните ли, почему тут не может быть -2?

 
 
 
 Re: А можно задать глупый вопрос?
Сообщение01.02.2013, 21:36 
Denis Russkih в сообщении #678962 писал(а):
Но с каких пор подобные мелочи стали смущать математиков?..
С чего Вы взяли, что смущают?
Математиков это никак не смущает. Они как бы не знают про это. Про это "знают", например, некоторые кухарки, школьники, даже иные артисты. А математиков всякое балабольство ни-о-чём обычно не интересует.
Впрочем, математики иногда смущаются от этих штук: это когда кухарки от этих же штук возбуждаются и начинают приставать к математикам.

 
 
 [ Сообщений: 69 ]  На страницу 1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group