Речь же не о первом знакомстве с предметом идет, а о более-менее последовательном построении математики как единой науки, в которой деление на алгебру, геометрию, тригонометрию и т. п. весьма и весьма условно.
В том-то и дело, что очень условно. Потому и достоинства той или иной последовательности изложения -- очень условны. Говоря абстрактно.
Говоря же конкретно -- есть один неоспоримый факт. Есть некоторые базовые знания, которые необходимы здесь и сейчас. И опираться они могут лишь на интуицию (поскольку бурбакизм начиная с минус тринадцатого класса в школьную программу заведомо не втиснешь). И уж только потом, потом можно пытаться наводить формальный порядок (для особо продвинутых) -- лишь после того, как все даже и особо продвинутые прочувствуют всю пользу тех же синусов, уже заранее известных -- но не ранее.
(Оффтоп)
Боюсь, что даже и у Вас в 239-й танцы с саблями и арктангенсами демонстрировали только тем детишкам, которые уже к тому времени твёрдо знали, что такое синусы.
Нельзя принципиально, или только в "классическом" доказательстве замечательного предела?
Неклассических доказательств этого предела не бывает. Любая попытка типа аксиоматического доказательства так или иначе будет паразитировать на классическом понимании предела как всё более и более точного приближения к реальности. "Данной нам в ощущениях", ога.
Не вижу принципиальных отличий: например, меру в 3/4 [прямого угла] имеет угол, составленный из 3 углов, отбрасыванием четвертого при разбиении прямого на 4 конгруэнтных угла.
Да, не видите. Я же специально оговорил этот Ваш пример как конечную двоичную дробь. И если у нас есть теория бесконечных дробей или неважно чего там эквивалентно-вещественного -- то и ладно. Если же нет -- длины на прямой с длинами на дуге невозможно согласовать, в принципе. А значит, и никакого практического значения понятие длины дуги (формально говоря) не имеет.