При таком подходе первый замечательный предел вообще в одно действие получается.
Об этом я и писал. Только Ландау сразу "угадал" нужный ряд, а можно было его "вычленить" из экспоненты более-менее естественным путём. И, если идти по этому пути, то ничего замечательного в первом замечательном пределе, действительно, нет.
Можно еще определить синус как решение дифференциального уравнения
с соответствующими начальными условиями
В этом случае, наверно, предел можно доказать, вылив воду из чайника: решить уравнение рядами (доказав, что там всё сходится), ну а дальше мы уже знаем.
1. какой метод быстрее + полезнее для студентов?
Вам шашечки или ехать? С ближним прицелом полезнее для студентов первого курса через школьную геометрию. Ведь им дифференцировать синусы-косинусы надо уже прямо сейчас - на физике. Быстрее всего через ряды (или аналитическое продолжение экспоненты, для наглядности). С дальним прицелом полезнее через теорию групп, мне кажется.
-- Ср авг 03, 2011 11:28:23 --Ну, например, [url =http://ru.wikipedia.org/wiki/Аксиоматика_Гильберта]wiki/Аксиоматика_Гильберта[/url].
Да, надо бы мне почитать эвклидову геометрию внимательнее. Вот и
Munin в другой теме примерно о том же говорит, что и Вы.
Но, как я понял, напрямую функции из геометрии в анализ засовывать нельзя. Поэтому Ваше предложение (или мои фантазии о Вашем предложении) сводится к нахождению таких функций (пары), что их алгебраические свойства совпадают с таковыми для синуса и косинуса в геометрии. При этом надо ещё доказать, что эти функции существуют (если мы их явно через ряды не выпишем, что сведёт этот случай к другому, и геометрическое доказательство сделает ненужным).