Цитата:
DefinitionIn the
-sphere
we choose a base point
. For a space
with base point
, we define
to be the set of homotopy classes of maps
that map the base point a to the base point b. In particular, the equivalence classes are given by homotopies that are constant on the basepoint of the sphere. Equivalently, we can define
to be the group of homotopy classes of maps
from the
-cube to
that
take the boundary of the -cube to .
For
, the homotopy classes form a group. To define the group operation, recall that in the fundamental group, the product
of two loops
and
is defined by setting
if
is in
and
if
is in
. The idea of composition in the fundamental group is that of following the first path and the second in succession, or, equivalently, setting their two domains together. The concept of composition that we want for the
-th homotopy group is the same, except that now the domains that we stick together are cubes, and we must glue them along a face.
We therefore define the sum of maps by the formula for and for . For the corresponding definition in terms of spheres, define the sum of maps to be composed with , where is the map from to the wedge sum of two -spheres that collapses the equator and is the map from the wedge sum of two -spheres to that is defined to be on the first sphere and on the second.If
, then
is abelian. (For a proof of this, note that in two dimensions or greater, two homotopies can be "rotated" around each other. See Eckmann-Hilton argument)
- Надо понимать, что мы берем что-то типа капли. Да?
- Получается что-то типа капель имеющих одно и то же основание. Правильно?
- Муть с сферами пропускаю. Too many errors...
пусть
-- множество классов гомотопных отображений
Т.е. любые два гомотопных отображения мы отождествляем.
Если
-- непрерывное отображение, то возникает отображение
по правилу
(квадратные скобки означают класс отображения)
Это я понимаю так. Пусть
какие-то отображения. Рассматриваем отображения
.
Если
и
пренадлежат одному классу,то очевидно
тоже принадлежат одному классу(уже среди классов
). Обратное, вообще говоря, неверно. Таким образом
определяет гомоморфизм классов эквивалентности
на
(или его подмножества).
Аналогично, если
-- непрерывное отображение, то возникает отображение
по правилу
См. выше. Т.е. построили гомоморфизм классов эквивалентности
на
.
Так вот
и
гомотопически эквивалентны, если для любого
имеется взаимнооднозначное соответствие
(можно и по второму аргументу -- равносильно)
Т.е. берем какое-то третье пространство
, рассматриваем всевозможные отображения
и
и разбиваем их на классы эквивалентности. Если для всех
у нас будут получатся изморфные классы, тогда
и
будут гомотопически эквивалентны. Правильно?
А причем тут предыдущие 2 предложения про
и
?