2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5, 6  След.
 
 Re: Может ли быть так для случая n=3?
Сообщение14.06.2024, 14:46 
Аватара пользователя
Grigory71 в сообщении #1642674 писал(а):
В уравнении (п.21) левая часть представляет собой экспоненциальную функцию

Где???
Grigory71 в сообщении #1642674 писал(а):
Поэтому для (o > 2) это уравнение не имеет решений.

$l=q=1,\ p=3\ \imply\ o=27$
С другой стороны, если учесть Ваши обозначения, то $o=\sqrt[3]{6}$ при любых $p$ и $q$, и это ничего не значит.

 
 
 
 Re: Может ли быть так для случая n=3?
Сообщение14.06.2024, 16:36 
Мне пока наиболее вероятным кажется такой вариант:

п.22 В уравнении (п.21) левая часть представляет экспоненциальную зависимость, в то время как правая часть представляет линейную зависимость.
Следовательно, для $o > 2$ это уравнение не имеет решений. Основываясь на этом условии, дополнительном условии $o > 1$
и форме самого уравнения, мы видим, что единственным возможным значением для $o$, которое могло бы обеспечить решение,
является $o = 2$ - положительное действительное число. Преобразуем его в целое.
-----------------------------

Над его уточнением буду думать
Всем большое спасибо!

 
 
 
 Re: Может ли быть так для случая n=3?
Сообщение14.06.2024, 19:23 
подумаю над более точным вариантом.

 
 
 
 Re: Может ли быть так для случая n=3?
Сообщение15.06.2024, 08:16 
Аватара пользователя
Grigory71 в сообщении #1642712 писал(а):
В уравнении (п.21) левая часть представляет экспоненциальную зависимость, в то время как правая часть представляет линейную зависимость.
Следовательно, для $o > 2$ это уравнение не имеет решений.


Левая часть уравнения $e^{ox}=x+1$ экспоненциальна, а правая линейна, однако это уравнение имеет решение $x=0$ при любом $o$.

 
 
 
 Re: Может ли быть так для случая n=3?
Сообщение02.09.2024, 23:39 
Уважаемые коллеги, мне кажется, что я нашел красивый пример доказательства для $n=3$, пожалуйста, проверьте, нет ли в нём ошибок.
(я обобщил свой случай произвольного $n$ для случая $n=3$)

1. Запишем теорему для $n = 3$

$x^3+y^3=z^3$

Где

$z = m^{3} + p^{3}$
$x= m^{3} - p^{3}$

Следовательно,

$m=\sqrt[3]{\frac{z+x}{2}}$
$p=\sqrt[3]{\frac{z-x}{2}}$

2. Сначала запишем разность из п.1
$y^3=z^3-x^3=(m^3+p^3)^3-(m^3-p^3)^3$

3. Разложим первое и второе выражения правой части п.2 по стандартным формулам $(a+b)^3, (a-b)^3$
$(m^3)^3+3\cdot(m^3)^2\cdot p^3+3\cdot m^3 \cdot (p^3)^2+(p^3)^3$
$(m^3)^3-3\cdot(m^3)^2\cdot p^3+3\cdot m^3 \cdot (p^3)^2-(p^3)^3$

4. Вычтем выражения из п.3 друг из друга (что-то сокращается, а что-то удваивается)
$2\cdot3\cdot(m^3)^2\cdot p^3+2\cdot (p^3)^3$

5. Следовательно, из п.4 получаем
$y^3=2\cdot[3\cdot(m^3)^2\cdot p^3+(p^3)^3]$

6. Преобразуем п.5
$y^3=2\cdot3\cdot\left(m^6\cdot p^3+\frac{1}{3}\cdot p^9\right)$

7. Обозначим из п.6
$l^3=\left(m^6\cdot p^3+\frac{1}{3}\cdot p^9\right)$

8. Следовательно, из п.6, п.7
$y^3=2\cdot3\cdot l^3=6\cdot l^3$

9. С другой стороны, подставим в правую часть п.2 $m=j \cdot p$
Таким образом, из правой части п.2 имеем
$((jp)^3+p^3)^3-((jp)^3-p^3)^3$

10. Следовательно, из п.9
$p^3\cdot ((j^3+1)^3-(j^3-1)^3)$

11. Разложим второй сомножитель п.10, и следовательно, получаем
$6j^6+2$

12. Обозначим из п.11
$q^3=6j^6+2$

13. Запишем теорему снова из п.2, учитывая всё вышесказанное
$(p^3)^3\cdot(6j^6+2)=2\cdot3\cdot\left(m^6\cdot p^3+\frac{1}{3}\cdot p^9\right)$

14. Следовательно, из п.7, п.12, п.13, имеем
$(p^3)^3\cdot q^3 = 2\cdot3\cdot l^3$

15. Перепишем п.14
$\frac{\left(p^{3}\right)^3 \cdot q^3}{l^3} =2\cdot 3$

16. Перепишем п.15
$\frac{\left(p^{3}\right)^3 \cdot (6j^6+2)}{m^6\cdot p^3+\frac{1}{3}\cdot p^9} =2\cdot 3$

17. Раскроем п.16 и учтем $m=jp$
$\frac{p^9\cdot(6j^6+2)}{(jp)^6\cdot p^3+\frac{1}{3}\cdot p^9} =2\cdot 3$

18. Следовательно, последовательно упрощая п.17
$\frac{p^9\cdot(6j^6+2)}{j^6 p^9+\frac{1}{3}\cdot p^9} =2\cdot 3$
$\frac{p^9\cdot(6j^6+2)}{p^9\left(j^6+\frac{1}{3}\right)} =2\cdot 3$
$\frac{6j^6+2}{j^6+\frac{1}{3}} =2\cdot 3$

19. В конце концов, из п.18 имеем
$\frac{3j^6+1}{j^6+\frac{1}{3}} =3$

20. Мы пришли к выводу, что уравнение п.19 имеет бесконечное количество решений. Что нам делать? Как его решить? Вернемся к п. 15
$\frac{\left(p^{3}\right)^3 \cdot q^3}{l^3} =2\cdot 3$

21. Учитывая выражения для $q$ и $l$ в уравнении п.15, п.20, у нас имеется бесконечное количество решений.
Следовательно, единственный возможный способ решить уравнение (п.20) — это предположить,
наложив на него дополнительное ограничение, что существует действительное число $o > 1$, удовлетворяющее условию:
$o^{3} =2\cdot 3 $
где
$o = \left(\frac{p^{3} \cdot q}{l} \right)$

22. Временно вернемся к степени $n$
перепишем (п.21) с учетом этого:
$o^{n} =2\cdot n $
В этом уравнении левая сторона $o^n$ имеет степенной рост при непрерывном возрастании аргумента $n$,
в то время как правая сторона $2n$ растет линейно. Следовательно, при $o > 2$ это уравнение не имеет решений.
Исходя из этого условия и дополнительного условия $o > 1$, мы видим, что единственное возможное значение для $o$,
которое может привести к решениям, это $o = 2$, являющееся положительным действительным числом.
Анализируя правую часть уравнения, видим, что данное значение $o$ является целым числом, так как $n$ - целое.
Следовательно, отсюда имеем
$2^{n} =2\cdot n $

23. Перепишем уравнение (п.22)
$2^{n-1} =n$
вернемся к степени $n=3$
$2^{3-1} =3$
$4=3$
пришли к абсурду
Случай $n=3$ доказан.

24. Также доказан и общий случай, произвольного $n$, ибо уравнение п.22-23
$2^{n-1} =n$
имеет решения только при $n=1$ или $n=2$,
о чем собственно и утверждает Пьер Ферма в своей теореме.

 
 
 
 Re: Может ли быть так для случая n=3?
Сообщение02.09.2024, 23:58 
Аватара пользователя
Grigory71 в сообщении #1652886 писал(а):
предположить,
наложив на него дополнительное ограничение, что существует действительное число $o > 1$, удовлетворяющее условию:
$o^{3} =2\cdot 3 $
Это и предполагать не надо: и так понятно, что такое действительное число существует. А именно, $o=\sqrt[3]{6}$ (так как $o^3=6$).
Grigory71 в сообщении #1652886 писал(а):
В этом уравнении левая сторона $o^n$ имеет степенной рост при непрерывном возрастании аргумента $n$,
в то время как правая сторона $2n$ растет линейно. Следовательно, при $o > 2$ это уравнение не имеет решений.
Исходя из этого условия и дополнительного условия $o > 1$, мы видим, что единственное возможное значение для $o$,
которое может привести к решениям, это $o = 2$, являющееся положительным действительным числом.
Вывод неверный. На самом деле, $o=\sqrt[3]{6}$. Видимо, Вы почему-то ошибочно решили, что число $o$ должно быть целым. Но это у Вас не доказано.

По определению из пункта 21, $o=\frac{p^3q}{l}$; но судя по пунктам 7 и 12, числа $q$ и $l$ совсем не обязаны быть целыми или даже рациональными. Нет оснований ожидать, что число $o$ будет целым.
Grigory71 в сообщении #1652886 писал(а):
Анализируя правую часть уравнения, видим, что данное значение $o$ является целым числом, так как $n$ - целое.
Это предложение непонятно и не обосновано.

 
 
 
 Re: Может ли быть так для случая n=3?
Сообщение03.09.2024, 15:32 
Рассмотрим более подробно выражение:
$o^n=2 \cdot n$
или в нашем случае
$o^3=2 \cdot 3$
Мы имеем из п.21
$o = \left(\frac{p^{3} \cdot q}{l} \right)$
Таким образом (вернемся к степени n)
$\left(\frac{p^{n} \cdot q}{l} \right)^n=2 \cdot n$
Но по условию задачи
$p=\sqrt[n]{\frac{z-x}{2}}$
Поэтому
$p^n=\frac{z-x}{2}$
Очевидно, числитель – целое число, обозначим его как $c=z-x$
В результате имеем
$\left(\frac{c \cdot q}{2 \cdot l} \right)^n=2 \cdot n$
Далее
$\left(\frac{c \cdot q}{2 \cdot l} \right)=\sqrt[n]{2 \cdot n}$
Это равенство выполняется если и только если:
$2=\sqrt[n]{2 \cdot n}$

$2^n=2n$

$n=2^\left(n-1\right)$

откуда имеем $n=1,  n=2$

поправьте меня, если я не прав

 
 
 
 Re: Может ли быть так для случая n=3?
Сообщение03.09.2024, 15:39 
Аватара пользователя
Grigory71 в сообщении #1652963 писал(а):
Очевидно, числитель – целое число, обозначим его как $c=z-x$
$c$ - целое число. Но $q$ и $l$ нецелые.
Grigory71 в сообщении #1652963 писал(а):
$\left(\frac{c \cdot q}{2 \cdot l} \right)=\sqrt[n]{2 \cdot n}$
Это равенство выполняется если и только если:
$2=\sqrt[n]{2 \cdot n}$
Вывод неверен. Как Вы получили, что в левой части стоит $2$? Так как $q$ и $l$ нецелые (и даже не обязательно рациональные), в левой части может стоять нецелое число.

 
 
 
 Re: Может ли быть так для случая n=3?
Сообщение03.09.2024, 16:03 
При минимальном $n=1$ выражение в правой части максимально и равно 2, при росте $n$ выражение в правой части стремится к 1, значит, чтобы получить максимум корней мы должны приравнять максимальному значению, то есть числу 2 левую часть.

 
 
 
 Re: Может ли быть так для случая n=3?
Сообщение03.09.2024, 17:18 
Аватара пользователя
Grigory71
Что значит "чтобы получить максимум корней"? Корней чего? Зачем нам их максимум?
В любом случае, приравнивание левой части числу $2$ ниоткуда не следует.

Почему левая часть у Вас не может быть равна, например, $\sqrt[3]{6}$? И $n=3$ тогда.

 
 
 
 Re: Может ли быть так для случая n=3?
Сообщение03.09.2024, 23:14 
Mikhail_K в сообщении #1652982 писал(а):
Grigory71
Что значит "чтобы получить максимум корней"? Корней чего? Зачем нам их максимум?
В любом случае, приравнивание левой части числу $2$ ниоткуда не следует.

Почему левая часть у Вас не может быть равна, например, $\sqrt[3]{6}$? И $n=3$ тогда.


Mikhail_K
Если Вы не верите мне, я постараюсь уточнить то что я сказал

 
 
 
 Re: Может ли быть так для случая n=3?
Сообщение03.09.2024, 23:34 
Аватара пользователя
Grigory71
Я Вам не "не верю", а задаю вопросы и показываю ошибку в рассуждении.
Дело не в том, чтобы "сформулировать как математик", а в том, что Ваши рассуждения невнятные и ошибочные.
Так какие корни Вы собрались максимизировать и зачем? А если они "не максимальны", то чем это плохо?

 
 
 
 Re: Может ли быть так для случая n=3?
Сообщение03.09.2024, 23:45 
Mikhail_K в сообщении #1653057 писал(а):
Grigory71
Я Вам не "не верю", а задаю вопросы и показываю ошибку в рассуждении.
Дело не в том, чтобы "сформулировать как математик", а в том, что Ваши рассуждения невнятные и ошибочные.
Так какие корни Вы собрались максимизировать и зачем? А если они "не максимальны", то чем это плохо?


Мы должны найти ВСЕ корни, в этом фишка, если не максимальны то мы НИЧЕГО не найдем )))

-- 04.09.2024, 00:56 --

Уважаемые коллеги, мне кажется, что я скорректировал красивый пример доказательства для $n=3$, пожалуйста, проверьте, нет ли в нём ошибок.
(я обобщил свой случай произвольного $n$ для случая $n=3$)

1. Запишем теорему для $n = 3$

$x^3+y^3=z^3$

Где

$z = m^{3} + p^{3}$
$x= m^{3} - p^{3}$

Следовательно,

$m=\sqrt[3]{\frac{z+x}{2}}$
$p=\sqrt[3]{\frac{z-x}{2}}$

2. Сначала запишем разность из п.1
$y^3=z^3-x^3=(m^3+p^3)^3-(m^3-p^3)^3$

3. Разложим первое и второе выражения правой части п.2 по стандартным формулам $(a+b)^3, (a-b)^3$
$(m^3)^3+3\cdot(m^3)^2\cdot p^3+3\cdot m^3 \cdot (p^3)^2+(p^3)^3$
$(m^3)^3-3\cdot(m^3)^2\cdot p^3+3\cdot m^3 \cdot (p^3)^2-(p^3)^3$

4. Вычтем выражения из п.3 друг из друга (что-то сокращается, а что-то удваивается)
$2\cdot3\cdot(m^3)^2\cdot p^3+2\cdot (p^3)^3$

5. Следовательно, из п.4 получаем
$y^3=2\cdot[3\cdot(m^3)^2\cdot p^3+(p^3)^3]$

6. Преобразуем п.5
$y^3=2\cdot3\cdot\left(m^6\cdot p^3+\frac{1}{3}\cdot p^9\right)$

7. Обозначим из п.6
$l^3=\left(m^6\cdot p^3+\frac{1}{3}\cdot p^9\right)$

8. Следовательно, из п.6, п.7
$y^3=2\cdot3\cdot l^3=6\cdot l^3$

9. С другой стороны, подставим в правую часть п.2 $m=j \cdot p$
Таким образом, из правой части п.2 имеем
$((jp)^3+p^3)^3-((jp)^3-p^3)^3$

10. Следовательно, из п.9
$p^3\cdot ((j^3+1)^3-(j^3-1)^3)$

11. Разложим второй сомножитель п.10, и следовательно, получаем
$6j^6+2$

12. Обозначим из п.11
$q^3=6j^6+2$

13. Запишем теорему снова из п.2, учитывая всё вышесказанное
$(p^3)^3\cdot(6j^6+2)=2\cdot3\cdot\left(m^6\cdot p^3+\frac{1}{3}\cdot p^9\right)$

14. Следовательно, из п.7, п.12, п.13, имеем
$(p^3)^3\cdot q^3 = 2\cdot3\cdot l^3$

15. Перепишем п.14
$\frac{\left(p^{3}\right)^3 \cdot q^3}{l^3} =2\cdot 3$

16. Перепишем п.15
$\frac{\left(p^{3}\right)^3 \cdot (6j^6+2)}{m^6\cdot p^3+\frac{1}{3}\cdot p^9} =2\cdot 3$

17. Раскроем п.16 и учтем $m=jp$
$\frac{p^9\cdot(6j^6+2)}{(jp)^6\cdot p^3+\frac{1}{3}\cdot p^9} =2\cdot 3$

18. Следовательно, последовательно упрощая п.17
$\frac{p^9\cdot(6j^6+2)}{j^6 p^9+\frac{1}{3}\cdot p^9} =2\cdot 3$
$\frac{p^9\cdot(6j^6+2)}{p^9\left(j^6+\frac{1}{3}\right)} =2\cdot 3$
$\frac{6j^6+2}{j^6+\frac{1}{3}} =2\cdot 3$

19. В конце концов, из п.18 имеем
$\frac{3j^6+1}{j^6+\frac{1}{3}} =3$

20. Мы пришли к выводу, что уравнение п.19 имеет бесконечное количество решений. Что нам делать? Как его решить? Вернемся к п. 15
$\frac{\left(p^{3}\right)^3 \cdot q^3}{l^3} =2\cdot 3$

21. Учитывая выражения для $q$ и $l$ в уравнении п.15, п.20, у нас имеется бесконечное количество решений.
Следовательно, единственный возможный способ решить уравнение (п.20) — это предположить,
наложив на него дополнительное ограничение, что существует действительное число $o > 1$, удовлетворяющее условию:
$o^{3} =2\cdot 3 $
где
$o = \left(\frac{p^{3} \cdot q}{l} \right)$

22. Временно вернемся к степени $n$
перепишем (п.21) с учетом этого:
$o^{n} =2\cdot n $
В этом уравнении левая сторона $o^n$ имеет степенной рост при непрерывном возрастании аргумента $n$,
в то время как правая сторона $2n$ растет линейно. Следовательно, при $o > 2$ это уравнение не имеет решений.
Исходя из этого условия и дополнительного условия $o > 1$, мы видим, что единственное возможное значение для $o$,
которое может привести к решениям, это $o = 2$, являющееся положительным действительным числом.
Анализируя правую часть уравнения, видим, что данное значение $o$ является целым числом, так как $n$ - целое.
Следовательно, отсюда имеем
$2^{n} =2\cdot n $

Докажем это:

Рассмотрим более подробно выражение:
$o^n=2 \cdot n$

или в нашем случае
$o^3=2 \cdot 3$

Мы имеем из п.21
$o = \left(\frac{p^{3} \cdot q}{l} \right)$

Таким образом (вернемся к степени n)
$\left(\frac{p^{n} \cdot q}{l} \right)^n=2 \cdot n$

Перепишем
$\left(\frac{p^{n} \cdot q}{l} \right)=\sqrt[n]{2 \cdot n}$

тогда
- при $n=1$ правая часть достигнет максимума равного $2$
- при росте $n$ правая часть стремится в пределе к $1$
- чтобы получить максимальное число возможных корней приравниваем левую часть к $2$
$\left(\frac{p^{n} \cdot q}{l} \right)=2$

В результате имеем
$2=\sqrt[n]{2 \cdot n}$

Отсюда получили
$2^n=2n$

23. Перепишем уравнение (п.22)
$2^{n-1} =n$
вернемся к степени $n=3$
$2^{3-1} =3$
$4=3$
пришли к абсурду
Случай $n=3$ доказан.

24. Также доказан и общий случай, произвольного $n$, ибо уравнение п.22-23
$2^{n-1} =n$
имеет решения только при $n=1$ или $n=2$,
о чем, собственно, и утверждает Пьер Ферма в своей теореме.

 
 
 
 Re: Может ли быть так для случая n=3?
Сообщение04.09.2024, 05:48 
Аватара пользователя
Grigory71 в сообщении #1653060 писал(а):
чтобы получить максимальное число возможных корней приравниваем левую часть к $2$
Grigory71 в сообщении #1653060 писал(а):
Мы должны найти ВСЕ корни, в этом фишка, если не максимальны то мы НИЧЕГО не найдем )))
Так или иначе, ошибка тут.

 
 
 
 Re: Может ли быть так для случая n=3?
Сообщение04.09.2024, 14:36 
Mikhail_K в сообщении #1653081 писал(а):
Grigory71 в сообщении #1653060 писал(а):
чтобы получить максимальное число возможных корней приравниваем левую часть к $2$
Grigory71 в сообщении #1653060 писал(а):
Мы должны найти ВСЕ корни, в этом фишка, если не максимальны то мы НИЧЕГО не найдем )))
Так или иначе, ошибка тут.


Вполне может быть, но к этой идее я пришел после простора лекции WOLFRAM на ютубе,
где использовался аналогичный подход, если мне не изменяет память...
Но спасибо, буду думать как сделать понятнее...
БОЛЬШОЕ СПАСИБО!

 
 
 [ Сообщений: 78 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group