2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Кватернионная логика
Сообщение07.04.2024, 14:56 
Alpha AXP в сообщении #1635589 писал(а):
Этот кусок содержит все эьементы таблицы умножения.
Нет. На всей картинке вообще нет ни одного $\to T\to T\to$.
Alpha AXP в сообщении #1635589 писал(а):
В задаче о раскраске плоскости возможно не менее 5 цветов.
Это вообще к чему? Не растекайтесь мысью по древу.
Alpha AXP в сообщении #1635589 писал(а):
Показывайте
Позже. Сначала решу, делать в техе или на бумаге.

 
 
 
 Re: Кватернионная логика
Сообщение07.04.2024, 15:13 
tolstopuz в сообщении #1635590 писал(а):
Позже. Сначала решу, делать в техе или на бумаге.

Хорошо, подождем.

 
 
 
 Re: Кватернионная логика
Сообщение07.04.2024, 15:36 
$$\begin{array}{ccccccccccccccccccc}
& \color{red}{\downarrow} & & \color{green}{\downarrow} & & \color{red}{\uparrow} & & \color{green}{\uparrow} & & \color{red}{\downarrow} & & \color{green}{\downarrow} & & \color{red}{\uparrow} & & \color{green}{\uparrow} \\
\color{green}{\leftarrow} & 1 & \color{red}{\rightarrow} & i & \color{green}{\rightarrow} & k & \color{red}{\leftarrow} & -j & \color{green}{\leftarrow} & -1 & \color{red}{\rightarrow} & -i & \color{green}{\rightarrow} & -k & \color{red}{\leftarrow} & j & \color{green}{\leftarrow} \\
& \color{green}{\uparrow} & & \color{red}{\downarrow} & & \color{green}{\downarrow} & & \color{red}{\uparrow} & & \color{green}{\uparrow} & & \color{red}{\downarrow} & & \color{green}{\downarrow} & & \color{red}{\uparrow} \\
\color{red}{\leftarrow} & -j & \color{green}{\leftarrow} & -1 & \color{red}{\rightarrow} & -i & \color{green}{\rightarrow} & -k & \color{red}{\leftarrow} & j & \color{green}{\leftarrow} & 1 & \color{red}{\rightarrow} & i & \color{green}{\rightarrow} & k & \color{red}{\leftarrow} \\
& \color{red}{\uparrow} & & \color{green}{\uparrow} & & \color{red}{\downarrow} & & \color{green}{\downarrow} & & \color{red}{\uparrow} & & \color{green}{\uparrow} & & \color{red}{\downarrow} & & \color{green}{\downarrow} \\
\color{green}{\rightarrow} & -k & \color{red}{\leftarrow} & j & \color{green}{\leftarrow} & 1 & \color{red}{\rightarrow} & i & \color{green}{\rightarrow} & k & \color{red}{\leftarrow} & -j & \color{green}{\leftarrow} & -1 & \color{red}{\rightarrow} & -i & \color{green}{\rightarrow} \\
& \color{green}{\downarrow} & & \color{red}{\uparrow} & & \color{green}{\uparrow} & & \color{red}{\downarrow} & & \color{green}{\downarrow} & & \color{red}{\uparrow} & & \color{green}{\uparrow} & & \color{red}{\downarrow} \\
\color{red}{\rightarrow} & i & \color{green}{\rightarrow} & k & \color{red}{\leftarrow} & -j & \color{green}{\leftarrow} & -1 & \color{red}{\rightarrow} & -i & \color{green}{\rightarrow} & -k & \color{red}{\leftarrow} & j & \color{green}{\leftarrow} & 1 & \color{red}{\rightarrow} \\
& \color{red}{\downarrow} & & \color{green}{\downarrow} & & \color{red}{\uparrow} & & \color{green}{\uparrow} & & \color{red}{\downarrow} & & \color{green}{\downarrow} & & \color{red}{\uparrow} & & \color{green}{\uparrow} \\
\color{green}{\leftarrow} & -1 & \color{red}{\rightarrow} & -i & \color{green}{\rightarrow} & -k & \color{red}{\leftarrow} & j & \color{green}{\leftarrow} & 1 & \color{red}{\rightarrow} & i & \color{green}{\rightarrow} & k & \color{red}{\leftarrow} & -j & \color{green}{\leftarrow} \\
& \color{green}{\uparrow} & & \color{red}{\downarrow} & & \color{green}{\downarrow} & & \color{red}{\uparrow} & & \color{green}{\uparrow} & & \color{red}{\downarrow} & & \color{green}{\downarrow} & & \color{red}{\uparrow} \\
\color{red}{\leftarrow} & j & \color{green}{\leftarrow} & 1 & \color{red}{\rightarrow} & i & \color{green}{\rightarrow} & k & \color{red}{\leftarrow} & -j & \color{green}{\leftarrow} & -1 & \color{red}{\rightarrow} & -i & \color{green}{\rightarrow} & -k & \color{red}{\leftarrow} \\
& \color{red}{\uparrow} & & \color{green}{\uparrow} & & \color{red}{\downarrow} & & \color{green}{\downarrow} & & \color{red}{\uparrow} & & \color{green}{\uparrow} & & \color{red}{\downarrow} & & \color{green}{\downarrow} \\
\color{green}{\rightarrow} & k & \color{red}{\leftarrow} & -j & \color{green}{\leftarrow} & -1 & \color{red}{\rightarrow} & -i & \color{green}{\rightarrow} & -k & \color{red}{\leftarrow} & j & \color{green}{\leftarrow} & 1 & \color{red}{\rightarrow} & i & \color{green}{\rightarrow} \\
& \color{green}{\downarrow} & & \color{red}{\uparrow} & & \color{green}{\uparrow} & & \color{red}{\downarrow} & & \color{green}{\downarrow} & & \color{red}{\uparrow} & & \color{green}{\uparrow} & & \color{red}{\downarrow} \\
\color{red}{\rightarrow} & -i & \color{green}{\rightarrow} & -k & \color{red}{\leftarrow} & j & \color{green}{\leftarrow} & 1 & \color{red}{\rightarrow} & i & \color{green}{\rightarrow} & k & \color{red}{\leftarrow} & -j & \color{green}{\leftarrow} & -1 & \color{red}{\rightarrow} \\
& \color{red}{\downarrow} & & \color{green}{\downarrow} & & \color{red}{\uparrow} & & \color{green}{\uparrow} & & \color{red}{\downarrow} & & \color{green}{\downarrow} & & \color{red}{\uparrow} & & \color{green}{\uparrow} \end{array}
$$
Красные стрелки - умножение на $i$, зеленые - на $j$. Можно еще нарисовать умножение на $k$, оно будет идти всегда по диагонали влево вниз. Умножение на $-1$ как-то само получилось по другой диагонали.

-- Вс апр 07, 2024 16:14:32 --

Alpha AXP в сообщении #1635586 писал(а):
Если плоскость замостить можно и точка будет эквивалентной, то картинка для плоскости верная.
Кстати, четырехмерное пространство замощается $16$-ячейниками: https://en.wikipedia.org/wiki/16-cell_honeycomb

 
 
 
 Re: Кватернионная логика
Сообщение07.04.2024, 17:10 
Читал тему, не понял зачем вообще нужно мостить плоскость структурой умножения единиц кватернионами (представленной в виде графа)? Стрелки в структуре и так ведут куда надо.
Почему мостить? Почему именно плоскость а не трехмерное или дясетимерное пространство; или например, не натянуть на сфере, торе, или каком-то другом топологическом многообразии?
Попытки связывать кватернионные единицы с какой-то "логикой" ничего в этом плане не проясняют.
Почему нужно чтобы логика в каком-то представлении, "замощала плоскость"?
"Структура обычной логики" - замощает плоскость? Как? Зачем? Почему именно плоскость?

 
 
 
 Re: Кватернионная логика
Сообщение07.04.2024, 17:21 
manul91 в сообщении #1635598 писал(а):
"Структура обычной логики" - замощает плоскость? Как? Зачем? Почему именно плоскость?
Видимо, по мнению ТС так логичнее :)

 
 
 
 Re: Кватернионная логика
Сообщение07.04.2024, 19:18 
Alpha AXP в сообщении #1635582 писал(а):
Не знаю в какой терминологии это называется правыми частными

Так это же теория групп. В группе $Q_8$ умножение некоммутативно, так что есть два разных деления $a^{-1} b$ и $b a^{-1}$. Обычно их называют левым и правым (какое именно как называть зависит от источника). Вы просто рисуете граф Кэли группы $Q_8$ для набора образующих $\{i, j, k\}$.

 
 
 
 Re: Кватернионная логика
Сообщение07.04.2024, 21:42 
tolstopuz в сообщении #1635594 писал(а):
Красные стрелки - умножение на $i$, зеленые - на $j$. Можно еще нарисовать умножение на $k$, оно будет идти всегда по диагонали влево вниз. Умножение на $-1$ как-то само получилось по другой диагонали.

Интересно, нечто подобное я и пытался построить, но все элементы хотел представить стрелками и композициями. Надо помедитировать как- нибудь над Вашей плоскостью. Вы не пытались определить минимальную область внутри которой укладывается группа $Q_8$? И есть ли эта область на этой плоскости? Насколько вижу умноения только на 4 элементв из 8, а можно как-то остальные умножения доопределить? Или они уже присутствуют благодаря чередованию остальных элементов?

 
 
 
 Re: Кватернионная логика
Сообщение07.04.2024, 21:50 
Alpha AXP в сообщении #1635612 писал(а):
Насколько вижу умноения только на 4 элементв из 8, а можно как-то остальные умножения доопределить?
Я же написал - умножение на $k$ будет стрелкой по диагонали влево-вниз. Соответственно на $-k$ по даигонали вправо-вверх, а на $-1$ по любой из двух других диагоналей - там эквивалентные вершины.

 
 
 
 Re: Кватернионная логика
Сообщение07.04.2024, 22:32 
manul91 в сообщении #1635598 писал(а):
Читал тему, не понял зачем вообще нужно мостить плоскость структурой умножения единиц кватернионами (представленной в виде графа)? Стрелки в структуре и так ведут куда надо.
Почему мостить? Почему именно плоскость а не трехмерное или дясетимерное пространство; или например, не натянуть на сфере, торе, или каком-то другом топологическом многообразии?
Попытки связывать кватернионные единицы с какой-то "логикой" ничего в этом плане не проясняют.
Почему нужно чтобы логика в каком-то представлении, "замощала плоскость"?
"Структура обычной логики" - замощает плоскость? Как? Зачем? Почему именно плоскость?


Почему интересно уместить кватеинион в не в гиперпространство- там, как было показано, требуется 64 различных ребра, чтобы описать группу кватернионов. Плоская структура, при введении некоторых естественных и понятных правил, может описывать все то же самое на 3-х парах ребер. Как думаете, почему первая компьютерная логика бинарная, а не на десятичной системе? Почему в природе не каждая частица уникальна, а всепредставлено большим количеством частиц несколтких типов? Почему мы воспринимаем наш мир 3-х мерным, а не 1000 мерным? Почему можем легко представить плоские и одномерные объекты, но затрубняемся с воображением уже четырехмерных?
Если что-то можно реализловать меньшими усилиями и ресурсами, то целесообразнее так и сделать. Представьте себе кватернионную логику на 16-ячеечнике. Это 64 выхода, которые получаются разными входами.
Двоичная логика- два входа и выход. Теперь представьте себе, что ту же самую кватернионную логику можно организовать на 6 выходах, образуемых различными входами. И простым устройством, реализующим доп правила. Вот и ответ, почему плоская кватернионная логика интереснее чем на гиперфигурах. Ее же больше шансов встретить и в природе не в виде гиперструктур, а в виде двух или трехмерных структур.
Почему логики должны иметь компактную форму в низких размерностях- понятно. А почему их структура должны иметь возможность заполнять какие-то пространства? Почему в компьютере не поставить бы один триггер и все? Зачем в АЛУ столтко много логических элементов и чем современнее компьютер- тем больше? Логика вроде та же, а ее структура в несколько раз повторяется. В идеале, если мы захотим получить какой-то вселенский суперкомпьютер, то его логика должна будет повторяться в пространстве и вкладываться в него. А если у нас есть структура логики и ее нельзя связать с такой же структурой, то мы не сможем ни увеличить мощность вычислений, ни эффективнр связать части структуры в разных областях пространства. Заполнение пространства структурами- это важное свойство, как и компактность. Например взаимодействия чмикрочастиц описывается алгебраическими структурами, а следовательно происходит не хаотично, а согласно логике этих алгебраических структур. Законы физики универсальны для любой области пространства, соответственно должна быть в любой области пространства и логическая структура, обеспечивающая реализацию этих законов.

-- 07.04.2024, 23:03 --

tolstopuz в сообщении #1635614 писал(а):
Я же написал - умножение на $k$ будет стрелкой по диагонали влево-вниз.

Первая строка второй столбец ij=k? Или я чего- то не понимаю?

 
 
 
 Re: Кватернионная логика
Сообщение08.04.2024, 01:39 
Alpha AXP в сообщении #1635615 писал(а):
Первая строка второй столбец ij=k? Или я чего- то не понимаю?
Как обычно, не понимаете.

Первая строка, второй столбец: $i$. Представляем себе, что влево вниз от этого $i$ нарисована синяя стрелка, которая означает умножение на $k$. Умножаем на $k$, получаем $ik=-j$, видим его слева снизу от $i$. И так далее.

-- Пн апр 08, 2024 01:40:35 --

Alpha AXP в сообщении #1635615 писал(а):
Представьте себе кватернионную логику на 16-ячеечнике. Это 64 выхода, которые получаются разными входами.
Двоичная логика- два входа и выход. Теперь представьте себе, что ту же самую кватернионную логику можно организовать на 6 выходах, образуемых различными входами. И простым устройством, реализующим доп правила.
Эти слова, как обычно, лишены смысла. Набор букв.

 
 
 
 Re: Кватернионная логика
Сообщение08.04.2024, 07:20 
tolstopuz в сообщении #1635624 писал(а):
Первая строка, второй столбец: $i$. Представляем себе, что влево вниз от этого $i$ нарисована синяя стрелка, которая означает умножение на $k$. Умножаем на $k$, получаем $ik=-j$, видим его слева снизу от $i$. И так далее.


Вопрос был относитьльно умножения i из первой строки второго столбца на зеленую стрелку, символизирующую умножение на j .
tolstopuz в сообщении #1635594 писал(а):
Красные стрелки - умножение на $i$, зеленые - на $j$.

тогда ij=к
Но я уже понял, что зеленая стрелка по диагонали вниз- это у Вас - j.
tolstopuz в сообщении #1635624 писал(а):
Эти слова, как обычно, лишены смысла. Набор букв.

Смысл очень простой. Попробуйте реализовать структуру гиперкуба и кватернионную логику в нашем трехмерном пространстве на 16-ячеечнике. Каждый элемент этой структуры, а их, как было показано должно быть 64, будет получаться в результате как минимум бинарной операции. Т.е. мы должны иметь 128 входных каналов в АЛУ, т.к. структуру 16 ячеечника реализуем или 16 входных каналов и восьмеричную систему счисления . И как-то (по схеме 16-ячеечника) обрабатывать эти сигналы и получать на выходе также 64 различных сигнала или 8 в восьмеричной.

Можно все это реализовать на 3-х парах сигналов и правилах, о которых говорилось выше, когда рассматривался треугольник из 6-ти стрелок. Можно реализовать эту логику на плоской структуре этого треугольника и дополнительном простом устройстве, интерпретирующем правила.

 
 
 
 Re: Кватернионная логика
Сообщение08.04.2024, 09:17 
dgwuqtj в сообщении #1635605 писал(а):
Так это же теория групп. В группе $Q_8$ умножение некоммутативно, так что есть два разных деления $a^{-1} b$ и $b a^{-1}$. Обычно их называют левым и правым (какое именно как называть зависит от источника). Вы просто рисуете граф Кэли группы $Q_8$ для набора образующих $\{i, j, k\}$

Как оказалось в этом графе недостает умножения(композиции) $TT$, т.е. на граф Кэли он не тянет немного.

Выражаю благодарность уважаемому tolstopuz, за то, что он нашел эту ошибку и восхищаюсь его способностью скурпулезно вникать в идеи и мысли оппонента.

-- 08.04.2024, 09:20 --

tolstopuz

А Вы, кстати, не выделяли на плоскости область, которая будет графом Кэли?

 
 
 
 Re: Кватернионная логика
Сообщение08.04.2024, 09:34 
Аватара пользователя
Alpha AXP в сообщении #1635634 писал(а):
Попробуйте реализовать..

Объясните, все-таки, что конкретно Вы предлагаете?
Какое отношение графы Кэли имеют к логике?
И зачем эти Ваши построения, чем бы они ни были, надо реализовывать?

 
 
 
 Re: Кватернионная логика
Сообщение08.04.2024, 09:47 
пианист в сообщении #1635648 писал(а):
Объясните, все-таки, что конкретно Вы предлагаете?
Какое отношение графы Кэли имеют к логике?
И зачем эти Ваши построения, чем бы они ни были, надо реализовывать?

Алгебраические структуры можно интерпретировать как логики, если привести их к диаграммной схеме, т.е. к графу грубо говоря. Вот вначале темы был приведен граф и дополнен правилами до группы кватернионов. В нем можно дать вполне человеческую интерпретацию операциям композиции стрелок. И она -эта интерпретация приводилась. Логика более сложная и высказывания более сложные, но вполне логичные. А операция всего-лишь бинарная, также как в обычной логике. Все логики (алгебраические структуры) реализуются или могут найти применение в той или иной области природы. Через них реализуется организация вселенной, законы и закономерности. Человек лишь учится пользоваться этими структурами и с их помощью влиять на окружающий мир.Представьте, что у человека сегодня не было бы обычной логики. А это значит не было бы компьютеров и цифровых гаджетов. И, соответственно эволюции. Зачем люди формализовали обычную логику и реализовали ее структуру в железе?

 
 
 
 Re: Кватернионная логика
Сообщение08.04.2024, 10:21 
Аватара пользователя
Alpha AXP в сообщении #1635650 писал(а):
Алгебраические структуры можно интерпретировать как логики

Что Вы здесь именуете логиками?

 
 
 [ Сообщений: 74 ]  На страницу Пред.  1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group