Объективная реальность — это создатель истинности для высказываний, формулируемых в рамках наших физических моделей, то есть высказываний вроде "нейтрино имеет ненулевую массу", "выполняются три закона Ньютона" и т. д. Создатель истинности — это то, что делает высказывания истинными или ложными.
А что делает высказывания "истинными"? Классический логик скажет, что построение модели (причём разные модели определяют истинность по-разному). Конструктивная логика скажет, что источник истинности - некая процедура (можно сказать, что процедура доказательства). В естественных науках, вроде, принято считать, что "истинной" следует считать ту теорию, которая надёжно подтверждена экспериментами. При этом если покопаться, то возникает куча дополнительных вопросов: Насколько надёжно и какими экспериментами. Вот утверждение: "Тела падают с ускорением примерно 9.8 метров в секунду в квадрате", - оно "истинно" или нет? С одной стороны, было множество возможностей убедиться, что на Земле это действительно так. С другой стороны, сейчас мы знаем, что "истинность" этого высказывания довольно условна - ровно в той мере, в какой речь идёт о ближней окрестности Земли. Подразумевается ли это контекстом утверждения? Точно так же в будущем мы можем обнаружить ограниченность области применения любого "фундаментального" теоретического утверждения.
А каков Ваш ответ?
Т.е. любое определение - это новая аксиоматика?
Т.е. когда я ввожу такое определение:
Пусть
(т.е. просто определяю одноэлементное множество посредством прямого перечисления его элементов)
я ввожу какую-то новую аксиоматику?
Конечно, это и есть аксиома. Причём
,
и фигурные скобки должны быть распознаваемы грамматикой языка.
Я могу, конечно попробовать догадаться, что Вы имеете в виду какую-нибудь аксиому типа
, но это абсолютно чуждый для меня способ мышления.
Ну да, можете и так интерпретировать. Чуждость или не чуждость - это вопрос привычки. На самом деле, любая формулировка задачи - это по-сути дополнительная аксиоматика к той теории, в которой решается задача. Т.е. когда Вы читаете: "Из пункта А в сторону пункта Б в полдень выехал поезд, движущийся со скоростью 80 км/ч", - то Вы присоединяете это утверждение к аксиомам той теории, которая определяет скорости через расстояния и время, а потом делаете вывод в отношении того конкретного вопроса, который задан в задаче (например, когда этот поезд с чем-то там встретится).
Так мне это и надо. Для меня доверие = непротиворечивость
Так непротиворечивых аксиоматик можно наформулировать сколько угодно самых разных, причём зачастую несовместимых друг с другом. Большая их часть будет совершенно бессмысленна и никому и никогда не интересна. Как Вы можете доверять им всем, с учётом их возможной несовместимости?
Да, непротиворечивость по модулю непротиворечивости моей теории множеств. Но я в нее верю безусловно, поэтому для меня это не проблема.
Ну, это Ваше дело. Но я Вам напомню, что при добавлении аксиом непротиворечивая теория может стать противоречивой, но не наоборот. Поэтому усложнение аксиоматики - всегда сомнительно. Вот, скажем, Вы знаете, что в арифметике Пеано неразрешима теорема Гудстейна. А можно ли её добавить в качестве новой аксиомы? Да сколько угодно. Только к сомнениям в непротиворечивости самой арифметики после этого добавятся сомнения в теореме Гудстейна. Кстати, можно добавить в качестве новой аксиомы отрицание теоремы Гудстейна. В итоге получим омега-противоречивую теорию. И это ещё не значит, что в такой теории выводится противоречие. Но вот если к омега-противоречивой теории добавить утверждение о её непротиворечивости, то уже получим противоречивую теорию.
Поэтому усиление аксиоматики всегда чревато тем, что на каком-то этапе мы получим противоречие (и поначалу может быть даже не заметим этого). А уж насколько адским усилением аксиоматики является хотя бы та же аксиома выбора, я даже напоминать не буду.
-- Вс дек 24, 2023 23:02:39 --Тут вопрос в том, включать ли в математику вопрос о том, что включать в математику. Я считаю, что нет.
Я не предлагаю включать этот вопрос в математику. Но о том, что этот вопрос существует и важен для реальных математиков, свидетельствует хотя бы то, что вся математика пока ещё не погрязла в построениях всевозможных нестандартных моделей чего угодно, а большей частью всё же занимается достаточно осмысленными вещами.
Я Вам сейчас состряпаю две исторические теории, которые методом С. Потолка выяснят это имя. Вопрос о том, какая из них дает правильный ответ, Вы считаете осмысленным?
Так я же не говорю, что все исторические теории равноценны. История - наука о наблюдавшемся, поэтому подтверждение её теорий наблюдениями - важно. Так что будем Вашу "состряпанную" теорию пытаться чем-то подтвердить или опровергнуть.
Как это? Вы требуете, чтобы классическая логика сказала Вам, верна ли теорема Бернштейна - на том основании, что она считает, что оно либо верно, либо неверно.
Это не я требую, а построители моделей обещают сказать нам что-то про "истинность". И замечу, что сама потребность говорить что-то про "истинность" дополнительно к доказуемости возникла именно потому, что для доказуемости нет закона исключённого третьего.
Если я сейчас выпишу из головы какой-нибудь список аксиом, то показать, что ZF может построить его модель - хороший способ повысить уверенность в том, что мой список не противоречив.
Это артефакт Вашего избыточного доверия к ZF самой по себе. Я этим не особо страдаю.