2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 22, 23, 24, 25, 26, 27, 28 ... 215  След.
 
 Re: Пентадекатлон мечты
Сообщение30.03.2022, 23:04 
Аватара пользователя
Dmitriy40 в сообщении #1551458 писал(а):
Разумеется 14, я же тут оцениваю вероятность 14-ки, а не 15-ки.

Но чисел-то у нас всего 15. 14 чисел имеют по 12 делителей. А какое количество делителей имеет ещё одно число ? Неужто любое возможное, в том числе 12?
А если 12 оно иметь не может, то как это учтено в формуле?

 
 
 
 Re: Пентадекатлон мечты
Сообщение30.03.2022, 23:30 
Yadryara в сообщении #1551461 писал(а):
А какое количество делителей имеет ещё одно число ? Неужто любое возможное, в том числе 12?
Да, любое возможное. И например 12. 15-ка является и 14-ой тоже. :mrgreen:
Если хотите исключить 15-ку, то видимо надо вычесть её вероятность ... Получится $p_{14} = p_1^{11}p_2^3 - p_1^{11}p_2^4 = p_1^{11}p_2^3(1-p_2)$. Уменьшением расчётного значения в примерно раза полтора можно и пренебречь при погрешности реальных данных во много раз, учёт ведь сделает оценку лишь хуже.

Dmitriy40 в сообщении #1551458 писал(а):
На самом деле непонятно что мешает
Ха! Понятно что мешает — тормоза в PARI! Попытался я это дело запустить, так 24 паттерна обрабатывались аж 0.7с на итерацию, мрак. :-(

-- 30.03.2022, 23:45 --

По одной из групп паттернов, 720 паттернов, 3 итерации, всего $3\times720\times4=8640$ возможных мест, по 12 делителей оказалось в $463+428+499+524=1914$ местах, или $1914/8640=0.2215$, вот грубоватая прикидка для $p_2$.
Две итерации по 16-ти группам (включая все 12 N2), всего $16\times2\times720\times4=92160$ возможных мест, по 12 делителей оказалось в $5294+4871+3919+1368+5297=20749$ местах, или $p_2=20749/92160=0.2251$.
По всем 46080 паттернам одна итерация где-то около 3e39 (чуток промахнулся) в $46080\times4=184320$ возможных мест, по 12 делителей оказалось в $42183$ местах, $p_2=42183/46080/4=0.22886$. И вот этому уже вполне можно верить.
Для диапазона 3e37 $p_2$ увеличивается до $0.2324$, я бы сказал незначительно, можно смело брать $0.23$ и не париться.

 
 
 
 Re: Пентадекатлон мечты
Сообщение30.03.2022, 23:58 
Аватара пользователя
Dmitriy40 в сообщении #1551463 писал(а):
15-ка является и 14-ой тоже. :mrgreen:

Вы это можете сказать, да. Мы же нигде не договорились, что 14-кой надо называть именно ровно 14 чисел по 12 делителей.

Поскольку мы считаем матожидание количества 14-к, то нам ещё надо умножить на количество вариантов расположения единственного плохого числа: $p_1^{11}p_2^3(1-p_2)\cdot15$

И что не сходится?

 
 
 
 Re: Пентадекатлон мечты
Сообщение31.03.2022, 00:32 
Yadryara в сообщении #1551466 писал(а):
И что не сходится?
С чего это на 15 то? Запись $p_1^{11}$ означает что все 11 проверяемых чисел встали на свои места (и цепочка имеет метку ALL), значит для плохого числа осталось лишь 4 возможных позиции. Так что на 4.
Но не уверен что именно на 4: вот вероятность появления цифры 7 в пятизначных числах с 10000 по 19999 в любой из 4-х правых позиций ровно один раз составляет $2916/10000=0.2916$, вовсе не в четыре раза выше вероятности $1/10$. Нет?
Код:
? n=0; for(x=10000,19999, d=#select(t->(t==7),digits(x)); if(d==1, n++)); n
2916


Ну и прямое измерение вон выше даёт $p_2=0.23$ ...

 
 
 
 Re: Пентадекатлон мечты
Сообщение31.03.2022, 06:28 
Аватара пользователя
Dmitriy40 в сообщении #1551467 писал(а):
Запись $p_1^{11}$ означает что все 11 проверяемых чисел встали на свои места

Нет! Ведь это я ввёл обозначение $p_1$, позвольте мне ещё раз объяснить, что оно означает.

Yadryara в сообщении #1551407 писал(а):
Вероятность обнаружения огромного(одиночного) простого обозначим $p_1$.

$p_1$ - вероятность обнаружения одиночного простого.

В каждом паттерне у нас 15 различных фиксированных чисел. Это кэфы паттерна. У Вас в проге они обозначены v[1], v[2], ..., v[15].

Взяли первое число n+0, разделили на v[1]. Программа гарантирует, что результат деления целочисленный.

С какой вероятностью число $\dfrac{n+0}{v[1]}$ является простым? С вероятностью примерно $p_1$. По определению.

С какой вероятностью число $\dfrac{n+1}{v[2]}$ является простым? С вероятностью примерно $p_1$. По определению.

...

С какой вероятностью число $\dfrac{n+14}{v[15]}$ является простым? С вероятностью примерно $p_1$. По определению

То есть вероятность $p_1$(как и $p_2$) подходит для всех 15 чисел, а не только для 11-ти!

Поэтому в тексте проги, которую приводил выше я и проверяю все 15 чисел:

numdiv(n+0)==6*(z[1]+1) ||
numdiv(n+1)==6*(z[2]+1) ||
...
numdiv(n+14)==6*(z[15]+1)

Возьмите, пожалуйста, любой Ваш паттерн(КМК37-11) и проверьте вручную по этим условиям. Надеюсь, Вы убедитесь, что программа прервёт проверку, как только обнаружит хоть одно одиночное простое из 15-ти. На любом месте.

Запись $p_1^{11}$ это вероятность того, что любые ровно 11 из 15 проверяемых чисел являются одиночными простыми.

Dmitriy40 в сообщении #1551467 писал(а):
Ну и прямое измерение вон выше даёт $p_2=0.23$ ...

Во-первых, это другая вероятность. Прошу придумать для неё другое обозначение.
Во-вторых. Как предполагаете её использовать?

 
 
 
 Re: Пентадекатлон мечты
Сообщение31.03.2022, 10:36 
Аватара пользователя
Н-да. Если матожидание количества 15-шек вычисляется довольно просто

$MO(15) = yp_1^{11}p_2^4$

То матожидание количества именно 14-к(любых, а не только ALL) уже вота как:

$MO(14) = y(11(p_1^{10}p_2^5 + p_1^{10}p_2^4(1-p_1-p_2)) +4(p_1^{11}p_2^3(1-p_1-p_2)) + 4(p_1^{12}p_2^3))$

Здесь y - количество попыток. В последнее время оно было 27,3 ярда.

 
 
 
 Re: Пентадекатлон мечты
Сообщение31.03.2022, 10:43 
Yadryara в сообщении #1551478 писал(а):
Запись $p_1^{11}$ это вероятность того, что любые ровно 11 из 15 проверяемых чисел являются одиночными простыми.
Простите, но тогда запись $p_1^{11}$ не описывает ни 15-ку, ни даже 11 верных чисел в ней. Вообще. Потому что 4 из них могут попасть на непроверяемые места и такая цепочка решением не будет. Тут уже Вы путаете искомую 15-ку и просто 19 простых в цепочке. Зачем она тогда вообще?!
Аналогично и с $p_2$, если она описывает любые места, то нафик нужна?
$p_1^{11}p_2^4$ вовсе не будет корректной 15-ой. Что за вероятность тогда Вы так считаете? Вероятность 11-ти огромных простых в любых местах одновременно с ещё 4-мя парами простых в оставшихся местах? Наплевав что $p_2$ может встать и на место к примеру n+7, где обязано быть лишь $p_1$? Это уж точно не вероятность 15-ки. В неё попадут и все valids=7,8,9,10 (вот для чего похоже Вы хотели их считать то ...).
А раз моя программа требует чтобы на 11-ти местах стояли таки "почти простые", то после неё оценить $p_1$ (именно в Вашем смысле, как про любое из 15-ти мест) вообще невозможно! О чём и твержу.
Yadryara в сообщении #1551478 писал(а):
Во-первых, это другая вероятность. Прошу придумать для неё другое обозначение.
Во-вторых. Как предполагаете её использовать?
Хорошо, давайте переименуем в допустим $p_{2D}$ и $p_{1D}$.
Именно что пытался посчитать вероятность появления на 4-х непроверямых местах комбинации ровно из двух простых (точнее ровно 12 делителей), чтобы можно было её (в 4-й степени понятно) умножить на вероятность появления ALL цепочки и получить вероятность искомой 15-ки (которая по определению ALL). А для умножения вероятностей они нужны независимыми, по ALL же цепочкам мы её знаем ($p_{1D}^{11}=233/3\cdot10^{37}$), а $p_{2D}=0.23$ нашёл выше.

 
 
 
 Re: Пентадекатлон мечты
Сообщение31.03.2022, 11:45 
Аватара пользователя
Dmitriy40

Вот мы смотрим на 1-е место, где нам нужно одиночное простое. Какова вероятность, что мы его там обнаружим? $p_1$. По определению.

Вот мы смотрим на 2-е место, где нам нужно одиночное простое. Какова вероятность, что мы его там обнаружим? $p_1$. По определению.
...
Вот мы смотрим на 11-е место, где нам нужно одиночное простое. Какова вероятность, что мы его там обнаружим? $p_1$. По определению.

Но нам нужны одиночные простые на всех этих 11-ти местах. Какова вероятность этого? $p_1^{11}$

Теперь мы смотрим на 1-е место, где нам нужна именно пара различных простых. Какова вероятность, что мы эту пару там обнаружим? $p_2$. По определению.
...
Наконец, мы смотрим на 4-е место, где нам нужна именно пара различных простых. Какова вероятность, что мы эту пару там обнаружим? $p_2$. По определению.

Но нам нужны пары различных простых на всех этих 4-х местах. Какова вероятность этого? $p_2^{4}$

А ведь нам для 15-шки нужны и одиночные простые на всех этих 11-ти местах и пары различных простых на всех этих 4-х местах. Какова вероятность 15-шки?
$$p_1^{11}p_2^{4}$$

 
 
 
 Re: Пентадекатлон мечты
Сообщение31.03.2022, 12:03 
Yadryara в сообщении #1551507 писал(а):
Вот мы смотрим на 1-е место, где нам нужно одиночное простое. Какова вероятность, что мы его там обнаружим? $p_1$. По определению.
Если Вы смотрите на результат фильтрации (например моей программы) — то нет же! В который раз повторяю, не используйте фильтрацию для получения вероятностей. После фильтрации Вы получаете условную вероятность, потому что выборка уже очень сильно искажена, исходы совсем не равновероятны. Вместо вероятности только в одном месте независимо от прочих Вы получите вероятность в данном месте при условии что в остальных 10-ти местах тоже нет малых делителей. Вероятности для 11-ти мест после фильтрации не независимы! И перемножать их (в 11-й степени) уже нельзя!

И Вы уж определитесь, $p_1$ это в любом месте (из 15-ти!) или таки в любом из выделенных 11-ти. А то Вы говорите одно (что в любом из 15-ти), а в формулах считаете другое (только в выделенных/проверяемых).
Если в любом из 11-ти выделенных/проверяемых, то $p_1^{11}$ будет вероятностью цепочки с ALL (то что я считаю $p_{1D}$ и что про $p_{2D}$ Вы утверждаете не совпадает с Вашим пониманием). И для $p_2$ останутся 4 вполне определённых места, не любые 15. Вы же хотели домножать на 15 почему-то.
Я же именно так и понимал и $p_1$ и $p_2$, как вероятности по 11 выделенным местам и по 4 выделенным местам. И именно так всегда и использовал. А Вы говорите "это другая вероятность". Сами себе противоречите.

-- 31.03.2022, 12:07 --

Dmitriy40 в сообщении #1551508 писал(а):
то $p_1^{11}$ будет вероятностью цепочки с ALL
Это даже не совсем точно, тут дополняется и условием на прочие 4 места (что там не должно быть делителей менее 40 кроме как единственного возможного для каждого места в квадрате, но учитывая малость порога погрешностью можно пренебречь).

-- 31.03.2022, 12:13 --

Yadryara
Давайте ещё раз: $p_1$ это вероятность по 11-ти выделенным для каждого паттерна местам, $p_2$ это вероятность по оставшимся 4-м местам, так? Тогда $p_1\equiv p_{1D}$ и $p_2\equiv p_{2D}$ и $p_1^{11}$ это вероятность цепочки ALL (с мелкой оговоркой выше) и не надо морочить мне голову про "другую" вероятность, они у нас таки одинаковые. И $p_1^{11}p_2^4$ действительно вероятность искомой 15-ки. Только считайте $p_1, p_2$ правильно, по неискажённой выборке и независимо.

-- 31.03.2022, 12:18 --

Dmitriy40 в сообщении #1551508 писал(а):
Только считайте $p_1, p_2$ правильно, по неискажённой выборке и независимо.
Уточнение: $p_1^{11}$ вполне можно считать как 233/27.3e9 или 233/3e37, тут искажения выборки не происходит (кроме мелкой оговорки выше), а вот $p_2$ надо считать без фильтрации по $p_1$, иначе получим в $p_2$ условную вероятность и перемножить их будет нельзя.

 
 
 
 Re: Пентадекатлон мечты
Сообщение31.03.2022, 12:39 
Аватара пользователя
Dmitriy40 в сообщении #1551508 писал(а):
Давайте ещё раз: $p_1$ это вероятность по 11-ти выделенным для каждого паттерна местам, $p_2$ это вероятность по оставшимся 4-м местам, так?

Нет, не так. Уже вроде бы совсем-совсем простое рассуждение выше привёл. Нет там ни слова ни про какую фильтрацию.

Yadryara в сообщении #1551478 писал(а):
$p_1$ - вероятность обнаружения одиночного простого.

Раз не сказано на каком месте, значит на любом.

Dmitriy40 в сообщении #1551508 писал(а):
И Вы уж определитесь, $p_1$ это в любом месте (из 15-ти!)


Определился сразу же, как только ввёл эти понятия. В любом месте из 15-ти. И $p_2$ тоже в любом месте из 15-ти.
Dmitriy40 в сообщении #1551508 писал(а):
А то Вы говорите одно (что в любом из 15-ти), а в формулах считаете другое

Нет, я так не делаю.

Так Вы согласны, что вероятность найти пятнашку(КМК37-11) за одну попытку $$p_1^{11}p_2^{4}$$ ?

 
 
 
 Re: Пентадекатлон мечты
Сообщение31.03.2022, 13:08 
Yadryara в сообщении #1551509 писал(а):
Так Вы согласны, что вероятность найти пятнашку(КМК37-11) за одну попытку $$p_1^{11}p_2^{4}$$ ?
Нет не согласен!
Сразу по двум причинам:
1. Вероятность $p_1$ найти после фильтрации моей программой желаемое простое на месте n+0 вовсе не независима от вероятности найти желаемое простое на любом из 10-ти мест n+1..14 (в зависимости от паттерна). Потому вероятность найти простое и на месте n+0 и на месте n+7 вовсе не $p_1^2$! Снова повторяю, после моей программы исходы не равновероятны и выборка искажена и перемножать вероятности нельзя. Практически не искажена лишь величина $p_{1D}^{11}$ (кроме мелкой оговорки выше), но в данном выражении $p_{1D}$ вовсе не по всем 15-ти местам!! Т.е. не Ваша $p_1$!! И $p_1^{11}$ в Вашем понимании вовсе не равно 233/27e9 или 233/3e37! Просто по Вашему же определению!
2. В формуле $p_1^{11}p_2^4$ никак не учтено что одиночное простое может попасть на непроверяемое место (там где должно быть число из группы $p_2$ с двумя простыми) и никак не учтено что пара простых может попасть на проверяемые места (например n+7), что недопустимо. $p_1^{11}p_2^4$ — это вероятность не искомой 15-ки, а просто абы как (произвольным образом) размещённых 11 огромных простых и 4-х пар любых простых. Это совершенно не искомая пятнашка!

-- 31.03.2022, 13:15 --

Так, стоп, или я чего-то не понимаю в теории вероятностей ...

 
 
 
 Re: Пентадекатлон мечты
Сообщение31.03.2022, 14:00 
Аватара пользователя
Dmitriy40 в сообщении #1551512 писал(а):
Так, стоп, или я чего-то не понимаю в теории вероятностей ...

Да, тервер это нам не форс моржовый.

Просто отрешитесь от всего ранее сказанного. Представьте, что это первый пост в теме. Потому, что если Вы не согласны с таким простым рассуждением, то как же нам двигаться дальше к гораздо более сложным вещам...

Тем временем я подставил $y=27300000000; p_1=0.154; p_2=0.359$ в

$MO(14) = y(11(p_1^{10}p_2^5 + p_1^{10}p_2^4(1-p_1-p_2)) +4(p_1^{11}p_2^3(1-p_1-p_2)) + 4(p_1^{12}p_2^3))$

И получил 35.4

Не самая худшая оценка, ибо 14-к на этом отрезке нашлось 20 штук.

В пересчёте на формат оценки, предложенный EUgeneUS, это одна 15-шка на $67$ 14-к

 
 
 
 Re: Пентадекатлон мечты
Сообщение31.03.2022, 14:29 
Yadryara
По всему выходит правы Вы, а не я.
Попробую разобраться на модельном примере. Назовём "пятнашкой" число вида 5AAABB, где на каждом месте A может стоять любая из цифр 7 или 8, а на каждом месте B любая из цифр 1,2,3. Вероятность обнаружить на каждом месте A цифру 7 или 8 назовём $p_1=2/10$, вероятность обнаружить на каждом месте B цифру 1,2,3 назовём $p_2=3/10$. Предположительно вероятность обнаружить число 5AAABB равна $p_1^3p_2^2=72/100000$. Предположим не можем прямо подсчитать количество чисел 5AAABB, но можем подсчитать количество чисел 5AAxx (это аналог цепочек ALL), что даст $p_1^3$, и 5AAABx и 5AAAxB и из последних двух добыть $p_2^2$. Количество вариантов AAA равно 8-ми, значит количество чисел 5AAAxx равно 800 и $p_1^3=800/100000=0.008$, $p_1=\sqrt[3]{p_1^3}=2/10$, как и ожидалось. Из этих 800 вариантов 240 (или $3/10$) будут вида 5AAABx и 240 (или тоже $3/10$) будут вида 5AAAxB, но сложить их нельзя так как они пересекаются. Зато можно взять среднее из них, получим очевидно снова $3/10$. Вариантов пересечений всего BB или $9/100$. А нам надо получить $72/100000$ имея $8/1000$ и $3/10$. Очевидно придётся их перемножить именно как и предполагалось $p_1^3p_2^2$. Выходит в этой формуле и не нужно деление мест на проверяемые A и непроверяемые B. И фильтрация по AAA никак не мешает получить $p_2=3/10$, хоть из $240/800$ с ней, хоть из $30000/100000$ без неё.

Что же, если это всё правильно, а на то очень похоже, то все мои слова выше про фильтрацию и (условные) вероятности ошибочны. А Ваши формулы правильные.


Теперь снова встаёт вопрос почему мою оценку $p_2=0.23$ выше Вы считаете ошибочной, ведь я взял её именно как среднее по всем паттернам из $30000/100000$ для 5xxxBx и $30000/100000$ для 5xxxxB в терминологии модельного примера. И она почти совпадает с моей же оценкой $p_2=0.25$ по найденным ALL цепочкам. И почему у Вас получается заметно другое $p_2=0.359$. Можете пояснить? И почему ошибочна и почему другое значение.
Да и $p_1$ из оценки $p_1=\sqrt[11]{233/27.3\cdot10^9}=0.184$ получается чуть другой, не $0.154$.

 
 
 
 Re: Пентадекатлон мечты
Сообщение31.03.2022, 14:48 
Аватара пользователя
Yadryara в сообщении #1551516 писал(а):
В пересчёте на формат оценки, предложенный EUgeneUS, это одна 15-шка на $67$ 14-к

Похоже, столько 14-к в 38-разрядных числах не будет :-(
Оценочное значение: 40-50 штук. В 1-2е38 их будет ещё меньше.
До 2е38 может быть и наберется 67 штук, но это же не гарантирует, что 15-ка сразу найдется.
Видимо, цель нужно ставить: обсчитать до 4е38. А обсчитано менее одной десятой от этого количества...

 
 
 
 Re: Пентадекатлон мечты
Сообщение31.03.2022, 15:13 
Аватара пользователя
Dmitriy40 в сообщении #1551517 писал(а):
Что же, если это всё правильно, а на то очень похоже, то все мои слова выше про фильтрацию и (условные) вероятности ошибочны. А Ваши формулы правильные.

Хорошо. А то я уж собирался форумных спецов по терверу попросить помочь. Кстати, сам VAL здорово разбирается.

Yadryara в сообщении #1551516 писал(а):
И получил 35.4

Кстати, формула весьма чувствительна к значениям $p_1$ и $p_2$ и если вместо $p_1=0.154$ подставить $p_1=0.147$, а вместо $p_2=0.359$ $p_2=0.349$, то как раз и получится 20-ка.

Dmitriy40 в сообщении #1551517 писал(а):
Теперь снова встаёт вопрос почему мою оценку $p_2=0.23$ выше Вы считаете ошибочной,

Стоп. Где я это говорил?

Dmitriy40 в сообщении #1551517 писал(а):
и $p_1=\sqrt[11]{233/27.3\cdot10^9}=0.184$ получается чуть другой, не $0.154$.
Это не чуть, это довольно сильно.

Я пока не вникал в Ваши подсчёты, но попробую. А Вы что скажете про формулу для 14-ки? Ведь это продолжение нашего разговора. Она нам важна.

 
 
 [ Сообщений: 3218 ]  На страницу Пред.  1 ... 22, 23, 24, 25, 26, 27, 28 ... 215  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group