Известно, что множество вещественных чисел несчётно. Однако, также известно, что мы можем пронумеровать все возможные программы для компьютера для заданного языка (например, для машины Тьюринга). Более того, мы можем пронумеровать все конечные последовательности символов заданного алфавита, сколь бы длинными они не были. Очевидно, что второе множество включает первое. Второе множество - это множество всех возможных предложений в языке (например если мы нумеруем конечные последовательности символов русского алфавита). Следовательно, оно включает в себя все числа, которые можно описать словами.
Введу немного более строгую формулировку: "Описуемый" объект в некой формальной системе - это такой объект, в записи которого конечное число символов данной формальной системы. Например, в записи числа 0.(3), если мы воспользуемся русским алфавитом, будет 21 символ: "0 целых и 3 в периоде". В записи строки "abababababababababababababababab" находится 17 символов: "повтори ab 16 раз" и так далее. Очевидно, что такие числа, как e,
,
,
записываются конечным числом символов, то есть являются описуемыми. Также описуемыми является большинство функций, etc.
В таком случае встаёт вопрос: зачем нам нужно несчетное множество вещественных чисел? Ведь они нам нужны были, к примеру, для функций, например,
. Но ведь в нашем счётном множестве чисел будут все точки подобных функций.
Проблема звучит примерно так: если у нас существует описуемая функция, область определения которой состоит из описуемых чисел, а область значений - из неописуемых, то значит нам нужно несчётное множество чисел.
Если же такой функции не существует, то мы можем выкинуть неописуемые объекты из нашей формальной системы, и она останется закрытой относительно любой операции (думаю можно сказать "воздействия одного описуемого объекта на другой").
Конечно хочется сказать что:
"У нас есть описуемая функция, принимающая описуемый аргумент, и возвращающая некое значение. Значит описанием данного значения и будет являться описание функции и описание её аргумента". Но я не уверен что тут нет ошибок в рассуждениях. Если бы удалось доказать, что любая формальная система закрыта относительно описуемых объектов, то это было бы весьма круто - можно было бы избавится от любых множеств мощности алеф_1 и выше.