Может быть, дело обстоит так?
О метрике точечной массы:
Координаты конечно сферические. Точечная масса на мой взгляд тождественна сингулярности, т.к. никаких других точечных масс в ОТО нет, как я понимаю. Наблюдатель тут введен для того, что я пока не понимаю, как смотреть на ситуацию и описывать ее как-то иначе. Взгляд из бесконечности - это мне как-то понятнее. Я еще не умею правильно определять понятие "расстояние", поэтому привел тут пример того, как я это понимаю:
. Конечно, это окружность, обмер которой происходит с малой скоростью.
Да, расстояние - это не
. Это
Запись уравнения метрики в виде
сделана потому, что так я понимаю СТО. В классической механике если мои часы переместились на секунду во времени, то и все остальные часы вокруг меня переместились на секунду во времени. Их перемещение в пространстве при этом может быть произвольным. Правило такое: все перемещаются одинаково во времени, а перемещение в пространстве совершено отдельно, с перемещением во времени не связано и может быть любым. В СТО другое правило - все перемещаются одинаково не во времени, а в пространстве-времени. Каждый наблюдатель с собственной точки зрения не имеет никакого перемещения в пространстве, все его пространственно-временное перемещение всегда чисто временное. А сторонние часы имеют относительно него перемещение еще и в пространстве, поэтому их пространственно-временное перемещение будет смешанным. Следовательно, для любого наблюдателя квадрат его перемещения во времени равен сумме квадратов перемещения сторонних часов в пространстве и во времени.
Уравнение Эйлера-Лагранжа, да. Это я в общем и имел в виду под максимизацией dt. Просто на мой взгляд численное решение этого уравнения последовательно точка за точкой сводится к выбору угла следующего шага
по отношению к предыдущему такого, чтобы за два этих шага потратить на путь в сумме максимальное время. Так что это все равно в некотором роде максимизация
, т.е. локальная максимизация каждого временного шага.
У меня есть пара вопросов:
Можно ли считать, что пробная частица очень малой массы в сравнении с сингулярностью движется примерно по геодезическим в невозмущенной метрике Шварцшильда? Допускается и не учитывать вклад в метрику собственной массы пробной частицы и сходит ли ошибка к нулю при устремлении это массы к нулю?
Движется ли свет точно вдоль геодезических линий точной метрики Шварцшильда, или существует какой-то вклад его собственной энергии в искривление пространства-времени, в котором он распространяется?