2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4, 5  След.
 
 Математика великих ученых
Сообщение05.12.2018, 16:20 
Добрый день.

Есть любопытный вопрос, действительно ли все величайшие физики владели в совершенстве математикой?

Читал, что Альберт Эйнштейн очень хорошо владел математикой и в 16 лет уже знал дифференциальное исчисление и прочие вещи. Наверняка, такое быстрое понимание этим УЖЕ в 16 лет - нечто фантастическое, на уровне чего это заложено? Впоследствии это ему дало очень хорошее развитие в области физики, построить теории и прочее.

Наверняка, есть физики, которые плохо владели математикой, но так же построили теории, некие открытия.

Интересно, с чем это связано, что неким удается и без математического аппарата построить теории, делать открытия и тому подобное, а другим же, то же самое, только с математическим аппаратом. Это зависит от того, на сколько развито/заложено воображение и представление физических процессов, их логика в голове? Что я имею ввиду: некоторые законы выводились математически, то есть получив что-то математически, проверили на опыте, все сходится (это так сказать ученые, владеющие математикой), возможно даже при этом не представляя процесс в голове, чисто на бумаге выведено с помощью математических операций. А другие же, могут в голове сначала представить процесс, что да как и рассуждать так же, не смотря на математические соотношения.

Из личного наблюдения: Например, дана задача указать, что будет с давлением при повышении температуры в замкнутом объеме, условно, у меня в голове рождается картинка, в которой двигаются молекулы, чем выше температура, тем больше они имеют скорость, соударяются чаще об стенки, следовательно, давление выше (при этом я не могу вовсе знать математическое соотношение). А в голове у моего товарища нет никаких таких картинок - он просто смотрит на формулу и говорит ответ, что увеличится. Получается, мы оба правы, но я думаю картинками, а он скорее математическими формулами. Вот, но какие-то другие процессы он может представить в картинках, а я только через математические соотношения.

Почему? С великими физиками происходило так же, которые не знали математики, но прекрасно открывали законы, описывали природу.

P.S. Может есть книга, где собрано большое количество биографий и интересных фактов великих физиков разных/одного веков.

 
 
 
 Re: Математика великих ученых
Сообщение05.12.2018, 16:27 
Vladimirkey в сообщении #1359057 писал(а):
Читал, что Альберт Эйнштейн очень хорошо владел математикой и в 16 лет уже знал дифференциальное исчисление и прочие вещи. Наверняка, такое быстрое понимание этим УЖЕ в 16 лет - нечто фантастическое, на уровне чего это заложено?
На каком-то уровне дифференциальное исчисление сейчас знает любой 16-летний школьник. Не понимаю, чего такого фантастического вы тут видите.

 
 
 
 Re: Математика великих ученых
Сообщение05.12.2018, 16:33 
Аватара пользователя
Vladimirkey в сообщении #1359057 писал(а):
Наверняка, есть физики, которые плохо владели математикой, но так же построили теории, некие открытия.


Это миф.

 
 
 
 Re: Математика великих ученых
Сообщение05.12.2018, 17:08 
Vladimirkey в сообщении #1359057 писал(а):
владели в совершенстве математикой

Здесь интересно, что понимается под "владением в совершенстве математикой"? И что значит

Vladimirkey в сообщении #1359057 писал(а):
которые плохо владели математикой


Vladimirkey в сообщении #1359057 писал(а):
Получается, мы оба правы, но я думаю картинками, а он скорее математическими формулами.


Насколько я понял вашу фразу. Кто-то исходит из "физических размышлений", а кто-то исходит уже из оформленного закона, записанного математическими формулами при решении задач.

Но физика это физика, а не математика.

(Оффтоп)

Когда-то меня добила фраза "при маленьких $x$ функция $\sin(x)$ это $x$, а значит чё-то получили там (лектор выписывает формулу). Больше на лекциях по физике я не появлялся." Может быть, зря.

 
 
 
 Re: Математика великих ученых
Сообщение05.12.2018, 17:21 
Vladimirkey в сообщении #1359057 писал(а):
P.S. Может есть книга, где собрано большое количество биографий и интересных фактов великих физиков разных/одного веков.

Есть серия книг, называется "Наука. Величайшие теории."
Подробнее http://nauka.deagostini.ru/
Я читал, мне понравилось.

(Перечень)

№1 – Эйнштейн «Теория относительности»
№2 – Ньютон «Закон всемирного тяготения»
№3 – Гейзенберг «Принцип неопределенности»
№4 – Кеплер «Движение планет»
№5 – Шредингер «Квантовые парадоксы»
№6 – Фейнман «Квантовая электродинамика»
№7 – Архимед «Закон Архимеда»
№8 – Гаусс «Теория чисел»
№9 – Галилей «Научный метод»
№10 – Мария Кюри «Радиоактивность и элементы»
№11 – Макс Планк «Квантовая теория»
№12 – Лейбниц «Анализ бесконечно малых»
№13 – Лаплас «Небесная механика»
№14 – Евклид «Геометрия»
№15 – Тьюринг «Компьютерное исчисление»
№16 – Коперник «Гелиоцентризм»
№17 – Гёдель «Теоремы о неполноте»
№18 – Ферма «Великая теорема Ферма»
№19 – Фарадей «Электромагнитная индукция»
№20 – Эйлер «Математический анализ»
№21 – Больцман «Термодинамика и энтропия»
№22 – Дальтон «Атомная теория»
№23 – Резерфорд «Атомное ядро»
№24 – Ферми «Ядерная энергия»
№25 – Максвелл «Электромагнитный синтез»
№26 – Нильс Бор «Квантовая модель атома»
№27 – Пифагор «Теорема Пифагора»
№28 – Хаббл «Расширение Вселенной»
№29 – Лавуазье «Современная химия»
№30 – Кантор «Бесконечность в математике»
№31 – Лорд Кельвин «Классическая термодинамика»
№32 – Дирак «Антивещество»
№33 – Лиза Мейтнер «Расщепление ядра»
№34 – Гильберт «Основания математики»
№35 – Фон Нейман «Теория игр»
№36 – Тесла «Переменный ток»
№37 – Ампер «Классическая электродинамика»
№38 – Гюйгенс «Волновая теория света»
№39 – Эдисон «Электрическое освещение»
№40 – Гук «Закон Гука»
№41 – Риман «Дифференциальная геометрия»
№42 – Гамов «Большой взрыв»
№43 – Пуанкаре «Топология»
№44 – Гельмгольц «Сохранение энергии»
№45 – Бойль «Закон Бойля»
№46 – Кавендиш «Гравитационная постоянная»
№47 – Фишер «Статистический вывод»
№48 – Паули «Спин»
№49 – Ландау «Сверхтекучесть»
№50 – Чандрасекар «Звездная эволюция»

 
 
 
 Re: Математика великих ученых
Сообщение05.12.2018, 17:47 
rockclimber в сообщении #1359059 писал(а):
На каком-то уровне дифференциальное исчисление сейчас знает любой 16-летний школьник. Не понимаю, чего такого фантастического вы тут видите.


Сейчас то да (обилие информации, интернет и пр.), а тогда? Удивительно, что это его заинтересовало, сейчас 16-летнего школьника это мало интересует.
jekyl в сообщении #1359072 писал(а):
Насколько я понял вашу фразу. Кто-то исходит из "физических размышлений", а кто-то исходит уже из оформленного закона, записанного математическими формулами при решении задач.


Да, именно это я и имел ввиду. Так сказать, на сколько ученые (довольного хорошего уровня) мыслят на уровне "картинок в голове", чем математическими выкладками, может быть там, где это бессильно (квантовая физика, к примеру), тогда приходится мыслить математически и только, нежели "картинками процесса в голове".

 
 
 
 Re: Математика великих ученых
Сообщение05.12.2018, 17:54 
EUgeneUS в сообщении #1359061 писал(а):
Vladimirkey в сообщении #1359057 писал(а):
Наверняка, есть физики, которые плохо владели математикой, но так же построили теории, некие открытия.


Это миф.

Как насчет Стивена Хокинга?

И вот об отношении юного Альберта Эйнштейна к математике:
Цитата:
«Если Эйнштейн нуждался в оправдании своего пренебрежения к математике, — пишет Брайен, — то оно состоит в том, что он был пленен физикой и уже развил идеи, которым суждено было поставить его в один ряд с Галилеем и Ньютоном. С помощью физики он мог интуитивно продвигаться к сердцевине материи и видеть своими глазами, что надлежит делать для решения стоящих перед наукой проблем» [2, с. 39].

Это, конечно, не является оправданием для пренебрежительного отношения к математике. Брайен и другие биографы, похоже, не понимают, что Эйнштейн не был экспериментатором, вроде Фарадея, который тоже не знал математики, и что нельзя стать блестящим физиком-теоретиком, если плохо чувствуешь математическую природу явления. Теория относительности — это сплошное издевательство и насилие над математикой. Истоки ее ошибок как раз и проистекают из пренебрежения «царицей наук».

Герман Минковский — профессор математики, прославившийся геометрической интерпретацией преобразований Лоренца (как сейчас выясняется, ложной), — назвал Эйнштейна «ленивой собакой», потому что тот не проявлял и «тени энтузиазма» к его предмету. Минковский преподавал в Политехникуме, где учился нерадивый студент, с 1896 по 1902 год. Уже в этот период, заинтересовавшись проблемами относительности, Минковский разрабатывал собственную теорию, которую историки науки почему-то не особенно жалуют.

http://www.softmixer.com/2012/03/blog-post_7697.html
Сам Эйнштейн впоследствии высказывал сожаление о том, что он плохо посещал лекции в Политехническом.

 
 
 
 Re: Математика великих ученых
Сообщение05.12.2018, 17:57 
Vladimirkey в сообщении #1359081 писал(а):
Сейчас то да (обилие информации, интернет и пр.), а тогда?
И тогда. Интернет - это не столько про обилие, сколько про скорость доступа и цену. А тогда вполне можно было найти книгу и прочитать.
Vladimirkey в сообщении #1359081 писал(а):
Удивительно, что это его заинтересовало, сейчас 16-летнего школьника это мало интересует.
Удивительно, но и тогда, и сейчас, 16-летних школьников интересуют совершенно разные вещи. Сейчас есть куча 16-летних школьников, участвующих в олимпиадах, например. Они же не с другой планеты прилетели? А если вы массовость увлечений имеете в виду, то массовость тоже не сильно нужна. Эйнштейна достаточно в одном экземпляре, а миллион Эйнштейнов не нужен.

 
 
 
 Re: Математика великих ученых
Сообщение05.12.2018, 18:19 
rockclimber в сообщении #1359084 писал(а):
массовость тоже не сильно нужна. Эйнштейна достаточно в одном экземпляре, а миллион Эйнштейнов не нужен
Паркинсон писал, что гениев рождает высокий средний уровень.

 
 
 
 Re: Математика великих ученых
Сообщение05.12.2018, 18:38 
Vladimirkey в сообщении #1359081 писал(а):
Так сказать, на сколько ученые (довольного хорошего уровня) мыслят на уровне "картинок в голове", чем математическими выкладками, может быть там, где это бессильно (квантовая физика, к примеру)

Там тоже "картинки", увы...

Теме явно нужен другой объект, а так это дичь.

 
 
 
 Re: Математика великих ученых
Сообщение05.12.2018, 19:01 
Rasool
Во, Фарадей, пишут, что не знал математики (но был экспериментатором), а Эйнштейн был теоретиком. Если не быть экспериментатором, а теоретиком, то возможно ведь, что он работал чисто с математическими соотношениями и из них выводил уже, а впоследствии этому придавал картинку, Фарадей, скорее всего делал наоборот.

 
 
 
 Re: Математика великих ученых
Сообщение05.12.2018, 19:18 
Аватара пользователя
Rasool в сообщении #1359083 писал(а):
И вот об отношении юного Альберта Эйнштейна к математике:


Знаете, я бы Вас попросил....

Вы приводите тут цитату с явно лженаучными утверждениями, из какого-то помоечного сетевого журнала. Даже не удосужившись прочитать, кто автор сего опуса.
Для информации, автор опуса, который Вы цитируете, Олег Акимов - известный фрик и эфирщик.
Вот что пишет троицкий вариант про сего аффтора:

Цитата:
Третьим гостем оказался Олег Акимов. Ведущий представил его как «историка науки». Наверное, историки науки должны удивиться. И не только они. Вряд ли этот человек кому-то известен среди серьезных исследователей. А вот то, что он пишет о своих взглядах у себя на сайте, поразит любого интересующегося научной популяризацией: «К недругам науки я причисляю многих прославленных мыслителей прошлого. Это — Аристотель, Галилей, Ньютон, Эйнштейн, Бор, Гильберт, Кантор, Фрейд, Юнг и др. Считаю их мышление во многом спекулятивным, неконструктивным и, следовательно, контр-продуктивным. Думаю, что они нанесли немалый урон развитию рациональных знаний о мире».

 
 
 
 Re: Математика великих ученых
Сообщение05.12.2018, 19:27 
warlock66613 в сообщении #1359088 писал(а):
Паркинсон писал, что гениев рождает высокий средний уровень.


Это спорно. Проблемы начинаются с того, что понятие "гений" не определено жёстко.

 
 
 
 Re: Математика великих ученых
Сообщение05.12.2018, 19:36 
Аватара пользователя
Vladimirkey в сообщении #1359098 писал(а):
Во, Фарадей, пишут, что не знал математики (но был экспериментатором),


Фарадей не знал векторного анализа. (ИМХО, если бы знал, то мы бы говорили об уравнениях Фарадея, а не об уравнениях Максвелла).
Но можно ли говорить, что Фарадей не знал математики, если Фарадей в связи с болезнью перестал активно работать где-то с 1840-го года, при этом:

Цитата:
Первым векторы ввёл У. Гамильтон в связи с открытием в 1843 г. кватернионов (как их трёхмерную мнимую часть). В двух монографиях (1853, 1866 посмертно) Гамильтон ввёл понятие вектора и вектор-функции, описал дифференциальный оператор {\displaystyle \nabla } \nabla («набла», 1846) и многие другие понятия векторного анализа. Он определил в качестве операций над новыми объектами скалярное и векторное произведения, которые для кватернионов получались чисто алгебраически (при обычном их умножении). Гамильтон ввёл также понятия коллинеарности и компланарности векторов, ориентации векторной тройки и др.


Говорить, что какой-то физик не знал математики, подразумевая современное её состояние - это спекуляции самого худшего пошиба.

 
 
 
 Пенроуз
Сообщение05.12.2018, 19:43 
Аватара пользователя
Vladimirkey в сообщении #1359057 писал(а):
Есть любопытный вопрос, действительно ли все величайшие физики владели в совершенстве математикой
Munin в сообщении #726243 писал(а):
Пенроуз в этом плане, честно говоря, неоднозначная фигура. Один из столпов физики - но в далёком прошлом, в 60-е (в отличие от Хокинга, продолжающего делать интересные вещи и сейчас). По подходу к физическим проблемам - типичный математик. <...> Пенроуз предполагает, что несколько далёких и совершенно не связанных между собой вопросов (ажно штуки 3-4) имеют один и тот же ответ. В физике таких чудес не бывает. (В математике, может быть, и бывает, не знаю. Но во многих других науках - тоже не бывает.) <...> авторитет Пенроуза столь огромен, что прямо отрицательное мнение об этом почти никто не высказывает.

 
 
 [ Сообщений: 63 ]  На страницу 1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group