Я про протоморфизмы чего-то не понял. Итак, они отличаются от морфизмов только тем, что протоморфизм может иметь сколько угодно начал и концов. Затем мы берем упорядоченную тройку "объект

, объект

и протоморфизм

такой, что одним из его начал является

и одним из его концов является

" и называем эту тройку морфизмом

.
В учебнике сказано, что такое построение категории "обычно используется на практике". Можно ли развернуть этот тезис, проиллюстрировать примерами? Пока никакой практики я в нем не вижу, вижу "почесать левой ногой правое ухо". В частности, не понимаю, что означает фраза
Цитата:
Именно так мы строили категорию Set, протоморфизмами в этом случае были теоретико-множественные функции
Сколько я помню теоретико-множественное определение функции, у функции ровно одно "начало" (область определения) и ровно один "конец" (область значений). Где же тут протоморфизм, когда это морфизм в чистом виде?