2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5
 
 Re: Необходимость и достаточность условия для сходимости
Сообщение02.11.2016, 00:53 
И так в каждой последовательности это - число. Так что получится?

 
 
 
 Re: Необходимость и достаточность условия для сходимости
Сообщение02.11.2016, 01:04 
Я не понимаю, что мне нужно проверить. Мне нужно найти предел $x_n(k)$ при $n \to \infty$?

 
 
 
 Re: Необходимость и достаточность условия для сходимости
Сообщение02.11.2016, 01:06 
Это совсем тяжело, когда не понимаешь, что дано в задаче.
Ну, проверьте.

 
 
 
 Re: Необходимость и достаточность условия для сходимости
Сообщение02.11.2016, 18:11 
Otta в сообщении #1165249 писал(а):
И так в каждой последовательности это - число. Так что получится?

Что условие:
$\forall k\in\mathbf{N}$ существует предел числовой последовательности $x_n(k)$
выполняется? Пределом для любого $k$ последовательности $x_n(k)$ будет само это число $x_n(k)$?

 
 
 
 Re: Необходимость и достаточность условия для сходимости
Сообщение02.11.2016, 18:55 
Аватара пользователя
Aiyyaa в сообщении #1165248 писал(а):
Разве $x_n(k)$ это последовательность? По-моему это число, которое расположено на к-ом месте.

Aiyyaa в сообщении #1164430 писал(а):
$\forall k\in\mathbf{N}$ существует предел числовой последовательности $x_n(k)$.

 
 
 
 Re: Необходимость и достаточность условия для сходимости
Сообщение02.11.2016, 20:33 
provincialka в сообщении #1165242 писал(а):
$x_1=(1,0,0,0,0,...)$
$x_2=(1,2,0,0,0,...)$
$x_3=(1,2,3,0,0,...)$
$x_4=(1,2,3,4,0,...)$
...
Каждая последовательность $x_n$, при фиксированном $n$ расположена в этом списке по горизонтали. А последовательность $x_n(k)$ при фиксированном $k$ -- где?

то есть $n$ нужно считать произвольным, и тогда последовательность $x_n(k)$ при фиксированном $k$ это $k$-ый столбец?

 
 
 [ Сообщений: 66 ]  На страницу Пред.  1, 2, 3, 4, 5


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group