2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3, 4, 5 ... 7  След.
 
 Почему математика эффективна при описании природы?
Сообщение15.07.2016, 20:40 


28/01/15

516
Почему математические теории, которые были разработаны очень давно, находят применение в современной физике. Например, комплексные числа. Когда их придумали, никакой электротехники и квантовой механики не было, и даже мысли об этом не могло быть. Никто же ведь из авторов не мог это предвидеть. А вот пригодились через сотни лет.
Может быть это потому, что математики придумали тучу всяких разделов, а пригодились не все, а только наиболее удобные для физиков. И ничего странного тут нет, просто выбрали наиболее удобный инструмент?

 Профиль  
                  
 
 Re: Старинная математика в физике. Почему
Сообщение15.07.2016, 20:48 
Заслуженный участник
Аватара пользователя


26/01/14
4891
Отнесение комплексных чисел к "старинной математике" выглядит несколько забавно)
doom701, не нужно думать, что у математиков была сильно большая свобода в "придумывании тучи всяких разделов". Вероятно, какая-то свобода в развитии математики была и есть, но она гораздо более ограничена, чем кажется издалека. В частности, комплексные числа придумали потому, что просто не могли не придумать; их введение было логически необходимо. Математика не смогла бы развиваться дальше, пока бы не придумали комплексные числа или что-то эквивалентное им.
Собственно по Вашему вопросу я ничего не скажу, но он кажется гораздо менее загадочным, когда понимаешь, что математические теории создавались вовсе не произвольным полётом фантазии, который через много веков вдруг нашёл применение.

 Профиль  
                  
 
 Re: Старинная математика в физике. Почему
Сообщение15.07.2016, 21:03 


28/01/15

516
Так в википедии написано, что комплексные числа появились в 17веке и раньше, это же древность. Или википедия и тут врет?

 Профиль  
                  
 
 Re: Старинная математика в физике. Почему
Сообщение15.07.2016, 21:11 
Заслуженный участник
Аватара пользователя


26/01/14
4891

(Оффтоп)

doom701 в сообщении #1138061 писал(а):
в 17веке и раньше, это же древность.

Ну, словосочетание "старинная математика", во-первых, звучит как "ныне не актуальная", что-то вроде аксиом Евклида для элементарной геометрии, во-вторых, вызывает ассоциации с Древней Грецией, а то и вовсе Древним Египтом.
И кроме того, что значит "древность"? В школе на уроках истории я слышал, что есть Древний мир, Средние века, Новое время и Новейшее время. Открытие комплексных чисел точно не относится к первому из этих периодов)
Конечно же, это спор ни о чём, - просто отнесение комплексных чисел к "старинной математике" звучит забавно, вот и всё)

 Профиль  
                  
 
 Re: Старинная математика в физике. Почему
Сообщение15.07.2016, 21:13 
Заслуженный участник
Аватара пользователя


20/08/14
8700
Развитие математики вплоть до XX в. во многом направлялось именно потребностями естествознания. По выражению М. Клайна, "чистая математика была, но не было ни одного чистого математика". Весь матан и даже само понятие функции выросли из механики (включая небесную). Гаусс создал свою теорию поверхностей и их внутренней геометрии, работая над геодезическими задачами. Отцы-основатели теорвера выводили формулы из экспериментов с монетками (в самом деле подбрасывали их по несколько тысяч раз), да и вообще теорвер весь XIX в. назывался "физической статистикой" и считался скорее разделом физики, пока не пришел Колмогоров и не объяснил математикам, что такое вероятность и с чем ее едят.

"Математика ради математики", изучение абстрактных структур, заданных произвольными аксиомами - это открытие XX в., и то эти структуры во многом являются обобщением возникших из практики понятий - как метрические пространства стали обобщением $\mathbb{R}^n$, а топологические - обобщением метрических. И сейчас еще далеко не вся математика (и я не рискну даже предположить, большая ли ее часть) "страшно далека от народа", ибо есть огромные области, связанные с дифурами (в т.ч. с частными производными), все это пересекается с функаном, и т.д. и т.п. Ну а если математика выросла из потребностей описать природу - стоит ли удивляться, что она эту природу успешно описывает? Тут скорее стоит удивляться, почему разные физические явления так удивительно похожи между собой - почему, например, закон всемирного тяготения так похож на закон Кулона. Но это вопрос к теорфизике, в которой я не столица Дании, поэтому умолкаю.

А что до комплексных чисел - ну извините, попробуйте поизучать полиномиальные уравнения и не наткнуться на комплексные корни. Долго продержитесь? Чему равен корень уравнения $x^2 + 1 = 0$?

Да, и не вся применяемая на практике математика такая уж древняя. Например, современное понятие вектора появилось в XX в.

 Профиль  
                  
 
 Re: Старинная математика в физике. Почему
Сообщение15.07.2016, 21:35 


28/01/15

516
Просто комплексные числа придумали до ТОЭ и КМ. Их придумывали не для этого. Пусть для решения практических задач, но других. И как так получилось, что они так хорошо подошли.

 Профиль  
                  
 
 Re: Старинная математика в физике. Почему
Сообщение15.07.2016, 21:39 
Заслуженный участник
Аватара пользователя


20/08/14
8700
А уж насколько не для этого выдумали рациональные числа, не говоря о натуральных!
doom701 в сообщении #1138068 писал(а):
И как так получилось, что они так хорошо подошли?

 Профиль  
                  
 
 Re: Старинная математика в физике. Почему
Сообщение15.07.2016, 21:52 


28/01/15

516
Потому что в физике есть расчеты.
А создатели комплексных чисел о ТОЭ и КМ ничего не знали и знать не могли.
Или мой вопрос равен такому.Почему в физике используются обычные числа?

 Профиль  
                  
 
 Re: Старинная математика в физике. Почему
Сообщение15.07.2016, 21:54 
Заслуженный участник
Аватара пользователя


20/08/14
8700
doom701 в сообщении #1138072 писал(а):
Или мой вопрос равен такому.Почему в физике используются обычные числа?
Равен. С точностью до $o(x)$.

 Профиль  
                  
 
 Re: Старинная математика в физике. Почему
Сообщение16.07.2016, 00:02 
Заслуженный участник


27/04/09
28128

(Оффтоп)

doom701 в сообщении #1138072 писал(а):
Почему в физике используются обычные числа?
Интересный вопрос. Тут впору бы отослать к монографии, но не припомню ни одной на эту тему. Подождёте немного, пока напишу? :roll:

Кроме шуток, вопрос действительно имеет смысловую составляющую. Но, кажется, Anton_Peplov выше про это писал (признаю, что не читал тему последовательно).

 Профиль  
                  
 
 Re: Старинная математика в физике. Почему
Сообщение16.07.2016, 00:02 


28/01/15

516

(Оффтоп)

что такое о(х)

Вопрос про обычные числа и их использование в физике бестолковый

 Профиль  
                  
 
 Re: Старинная математика в физике. Почему
Сообщение16.07.2016, 00:03 
Заслуженный участник


27/04/09
28128

(Оффтоп)

doom701 в сообщении #1138118 писал(а):
что такое о(х)
Создайте тему в ПРР математического раздела. :-)

 Профиль  
                  
 
 Re: Старинная математика в физике. Почему
Сообщение16.07.2016, 00:07 


28/01/15

516

(Оффтоп)

там надо знать половину ответа , а я вообще не знаю что это

 Профиль  
                  
 
 Re: Старинная математика в физике. Почему
Сообщение16.07.2016, 00:08 
Заслуженный участник
Аватара пользователя


16/07/14
9306
Цюрих

(Оффтоп)

arseniiv в сообщении #1138117 писал(а):
Тут впору бы отослать к монографии, но не припомню ни одной на эту тему

Лекция Вигнера не подходит?

 Профиль  
                  
 
 Re: Старинная математика в физике. Почему
Сообщение16.07.2016, 00:11 
Заслуженный участник


27/04/09
28128

(Оффтоп)

Не зна-аю.

doom701 в сообщении #1138120 писал(а):
там надо знать половину ответа , а я вообще не знаю что это
Ну тогда читайте Зорича. Найдите в поиске тему (новую, этого или конца предыдущего месяца) по словам типа «асимптотика», и там увидите мой пост с указанием места в Зориче. Можете просто по списку моих постов пройтись даже, чтобы её найти. (Да, я м-р Скромность. :lol:)

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 103 ]  На страницу 1, 2, 3, 4, 5 ... 7  След.

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: 12d3


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group