2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 5, 6, 7, 8, 9, 10, 11 ... 21  След.
 
 Re: Распределение заряда на иголке.
Сообщение26.02.2015, 15:46 
Заслуженный участник
Аватара пользователя


31/01/14
11348
Hogtown
Это о задаче (B)–фиксированные узлы с телетранспортировкой зарядов.

sup
 Вы же сами обратили наше внимание на то, что в задаче (B) зарядам выгодно собраться в одной точке. Т.е. если даже в концевых точка заряды даны (ну, скажем одинаковые) то уравнение удовлетворится, если остальные соберутся в центральной (при нечётном числе узлов). Чтобы этого не произошло, следует ввести самодействие $K h^{-1}\sum _n q_n^2$, $h=L/(N-1)$ и $K$ некоторый довольно большой но постоянный коэффициент:
$$
E:=\frac{1}{2h}\sum _{m\ne n} \frac{q_mq_n}{|m-n|}+\frac{K}{h} \sum _n q_n^2 
$$
и тогда вариационное уравнение при условии $\sum _n q_n=Q$ будет
$$
V_n:=\sum _{m\ne n} \frac{q_n|}{|m-n|}+2K q_n =\lambda.
$$
У нас есть эти уравнения (постоянства потенциала) вытекающие из вариационной задачи и альтернативно, уравнения на силы:
$$
\sum_{m\ne n}\frac{q_m}{|m-n|(m-n)}=0.
$$
В непрерывном (хотя и не в размерности 1) случае все ясно: $K=0$ и беря градиент $V(x)$ получаем уравнение на силы. То же в задаче (A): подвижные заряды (хотя и не в размерности 1). В дискретном же случае это не так:
$$
-V_{n+1}+V_n=\sum _{m\ne n,n+1} \frac{q_n|}{|m-n|(m-n-1)}+(1-2K) (q_{n +1}-q_n)=0.
$$
Очевидно, при ${m\ne n,n+1}$ неважно какой из сомножителей в знаменателе стоит с модулем. Мне кажется, что в задаче (B) именно вариационная постановка "правильная" .

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение26.02.2015, 16:32 
Аватара пользователя


08/12/08
400
svv,amon, краевую задачу можно поставить так
$\int\limits_{-1}^{1}\frac{\rho(y)}{(x-y)|x-y|}dy=-\Delta\varphi_1\lim\limits_{s\to0}\frac{{\theta}(-1-x+s)}{s}+\Delta\varphi_2\lim\limits_{s\to0}\frac{{\theta}(x-1+s)}{s}$,
где $\Delta\varphi_1$ и $\Delta\varphi_2$ - скачки потенциала на левом и правом концах отрезка соответственно, $\theta$ - функция Хэвисайда.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение26.02.2015, 18:00 
Заслуженный участник
Аватара пользователя


01/09/13
4676
Red_Herring в сообщении #982900 писал(а):
Вы же сами обратили наше внимание на то, что в задаче (B) зарядам выгодно собраться в одной точке

Вроде бы нет (просто тупо подсчитал описанную систему уравнений для разных $n$).
Проблема у меня получается в другом - нечётные заряды имеют значение около 0, тогда как чётные, соответственно, в два раза больше среднего.
код: [ скачать ] [ спрятать ]
Используется синтаксис Matlab M
n=100;
m=1;
for i=2:n+1,
 m(1,i)=0;
end,
for i=2:n,
 for j=1:n+1,
  if i>j,
   m(i,j)=1/(i-j)^2;
  else if i<j,
   m(i,j)=-1/(i-j)^2;
  else,
   m(i,j)=0;
  end,end,
 end,
end,
for i=1:n+1,
 m(n+1,i)=1;
end,
w=inv(m);
p=[];
for i=1:n+1,
 for j=1:n+1,
  if i==j,
   p(i,j)=0;
  else,
   p(i,j)=1/abs(i-j);
  end,
 end,
end,
q=-w(:,n+1)./w(:,1);
r=[min(q(2:2:n+1))*(n+1),min(q(3:2:n))*(n+1),sum(p*w(:,1))],
plot(r(1)/(n+1)*w(:,1)+w(:,n+1))
 

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение26.02.2015, 18:26 
Заслуженный участник
Аватара пользователя


31/01/14
11348
Hogtown
Geen
Я имею в виду задачу (B) в вариационной формулировке. Очевидно формулировка с напряженностями наследует в какой-то степени это.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение26.02.2015, 22:07 
Заслуженный участник


22/11/10
1184
Red_Herring в сообщении #982900 писал(а):
Мне кажется, что в задаче (B) именно вариационная постановка "правильная" .

Думаю, здесь есть специалисты, которые лучше меня скажут какая постановка более грамотная. Отмечу лишь пару моментов.
Первое. Задача с равновесием зарядов в узлах регулярной решетки может быть поставлена сама по себе. Кстати, а будет ли там существование и единственность? Ну да, там система линейных уравнений. А вдруг она вырождена? Правда не очень ясно, представляет ли эта задача хоть какой-нибудь интерес для физиков.
Второе. Вариационная постановка с самодействием скорее всего ближе к исходной задаче, нежели чем задача о равновесии. Здесь я с Вами готов согласиться. Меня смущает только некоторый волюнтаризм в выборе самодействия. Кроме того, величина $K$ никак не задана. И как ее выбирать - тоже не очень ясно. Может так случиться, что разные значения $K$ моделируют исходную задачу с разным масштабом. Это было бы интересно.
Подводя общий итог, я бы сказал, что с математической точки зрения было бы неплохо разобраться с асимптотикой для всех этих задач. Мне они кажутся весьма любопытными.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение26.02.2015, 22:19 
Заслуженный участник
Аватара пользователя


31/01/14
11348
Hogtown
sup в сообщении #983097 писал(а):
Меня смущает только некоторый волюнтаризм в выборе самодействия. Кроме того, величина $K$ никак не задана

Я исхожу из того, что заряды не совсем точечные, а шарики радиуса $\epsilon h$ где $\epsilon$ какая-то константа (и $K=K(\epsilon)$).

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение26.02.2015, 22:36 
Заслуженный участник


22/11/10
1184
А мне показалось, что Вы просто нарезали иголку на куски равной длины и все заряды, попавшие в один кусок "объединили". На "больших" расстояниях кусок действует приблизительно как точечный заряд, тут все неплохо. Но заряды все же сопротивляются объединению и этот факт надо как-то учесть.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение26.02.2015, 22:42 
Заслуженный участник
Аватара пользователя


31/01/14
11348
Hogtown
sup в сообщении #983134 писал(а):
А мне показалось, что Вы просто нарезали иголку на куски равной длины и все заряды, попавшие в один кусок "объединили".


Это то же самое (только коэффициент $K$ другой)

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение27.02.2015, 00:37 
Заслуженный участник
Аватара пользователя


04/09/14
5288
ФТИ им. Иоффе СПб
sup в сообщении #983097 писал(а):
Правда не очень ясно, представляет ли эта задача хоть какой-нибудь интерес для физиков.

А физики эту задачу пытаются решить со времен чуть не Максвелла. Поэтому я лично стараюсь вести себя как мышка, что бы математиков не спугнуть.

drug39 в сообщении #982914 писал(а):
краевую задачу можно поставить так
$\int\limits_{-1}^{1}\frac{\rho(y)}{(x-y)|x-y|}dy=-\Delta\varphi_1\lim\limits_{s\to0}\frac{{\theta}(-1-x+s)}{s}+\Delta\varphi_2\lim\limits_{s\to0}\frac{{\theta}(x-1+s)}{s}$,
где $\Delta\varphi_1$ и $\Delta\varphi_2$ - скачки потенциала на левом и правом концах отрезка соответственно, $\theta$ - функция Хэвисайда.

Уф-ф! Глядя на Вашу формулу, возникает ряд вопросов.
1. Вопрос, давно задаваемый Red_Herring'ом, ответ на который он отчаялся, судя по всему, получить. Я его чутка переформулирую. Можно ли сосчитать интеграл $\int\limits_{-1}^{1}\frac{\rho(y)}{(x-y)|x-y|}dy$ для $\rho(y)$ отличной от константы и $\delta$-функции. Если можно, то как (если можно, подробный пример).
2. Кто такая $\Delta\varphi_{1,2}$ и как ее сосчитать конструктивно.
3. Предел $\lim\limits_{s\to0}\frac{{\theta}(x-1+s)}{s}$ равно как и $\lim\limits_{s\to0}\frac{{\theta}(-1-x+s)}$ зависит от того, как $s$ идет к нулю. Предположим, что это $\lim\limits_{s\to+0}$. Тогда это либо ноль, либо (при $x=\pm 1$) бесконечность (последнее ни разу не означает, что написана $\delta$-образная последовательность). Что, по Вашему, надо делать с этой бесконечностью?

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение27.02.2015, 01:16 
Заслуженный участник
Аватара пользователя


01/09/13
4676
sup в сообщении #983097 писал(а):
А вдруг она вырождена?

Не вырождена. Но решение не регулярно в том смысле, что скачки между чётными и нечётными номерами зарядов, похоже, не стремятся к 0.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение27.02.2015, 03:04 
Аватара пользователя


08/12/08
400
amon в сообщении #983200 писал(а):
Уф-ф! Глядя на Вашу формулу, возникает ряд вопросов...
2. $\Delta\varphi_1$ и $\Delta\varphi_2$ - это величины, которыми нужно задаться для корректности краевой задачи. Размерность этих величин - потенциал. Понимать их можно как аналог скачка потенциала при переходе через простой слой. В симметричном случае $\Delta\varphi_1=\Delta\varphi_2$. Можно принять $\Delta\varphi_1\to+0, \Delta\varphi_2\to+0$, но $\Delta\varphi_1\ne0, \Delta\varphi_2\ne0$.
1. Можно ли сосчитать интеграл $\int\limits_{-1}^{1}\frac{\rho(y)}{(x-y)|x-y|}dy$ для $\rho(y)$, отличной от константы. В теории гиперсингулярных интегралов можно. Пример с дельта-функцией $\int\limits_{-1}^{1}\frac{\delta(y)}{(x-y)|x-y|}dy=\frac 1 x$ доказывается очень непросто. Для решения задачи можно воспользоваться примером по-проще, который, надеюсь, рассмотрим.
3. Разумеется, $\lim\limits_{s\to0}$ это $\lim\limits_{s\to+0}$ по умолчанию. Если изобразить функцию $-\Delta\varphi_1\lim\limits_{s\to0}\frac{{\theta}(-1-x+s)}{s}+\Delta\varphi_2\lim\limits_{s\to0}\frac{{\theta}(x-1+s)}{s}$ на графике, то увидим двуступенчатую кривую. Ступени на концах отрезка. Высоты ступений бесконечны, а площади ступений на отрезке $[-1, 1]$ конечные величины $-\Delta\varphi_1$ и $\Delta\varphi_2$ соответственно.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение27.02.2015, 13:25 
Заслуженный участник


22/11/10
1184
Geen в сообщении #983220 писал(а):
Не вырождена

Для нечетного количества зарядов (больше 3) вырождена. Для четного количества зарядов - нет (ну, так кажется :-) ).
Проверьте "руками" для 5 зарядов. Два единичных заряда в крайних точках иглы (отрезок $[0,1]$). Один заряд в центре. Для двух неизвестных зарядов получаем уравнение
$ 1= x + y/4 + 1/9$
Решений бесконечно много.
Все это легко вытекает из соображений симметрии. Там уравнений меньше чем неизвестных.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение27.02.2015, 14:02 
Заслуженный участник
Аватара пользователя


01/09/13
4676
sup в сообщении #983368 писал(а):
Там уравнений меньше чем неизвестных.
Посмотрите код, что я приводил (а то я мог и ошибиться где-нибудь) :-)
Ваши "силовые" $n-1$ уравнений дополнены двумя следующими: $(1,0,0,\dots)$ (задаётся заряд $q_0$) и $(1,1,1,\dots)$ (задаётся сумма зарядов). Детерминант отличен от 0 при любом $n$.
А задавать крайние заряды плохая идея при любом $n$ :-)
При нечётном $n$ там другая получается проблема - суммарный потенциал не зависит от $q_0$.

-- 27.02.2015, 14:12 --

sup в сообщении #983368 писал(а):
Решений бесконечно много.

Точнее, да, решений бесконечно много: $q_0$ - (почти) произвольный параметр. Однако, как-раз при чётных $n$ "суммарный потенциал" уменьшается с ростом $q_0$, и если мы не ограничиваем заряды одним знаком, то становится совсем плохо.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение27.02.2015, 16:34 
Заслуженный участник


22/11/10
1184
Ну тогда так. Три заряда. В сумме 3. На левом конце - 2. Устойчивой комбинации зарядов в точках 0, 0.5. 1 нет.
Т.е если решать некую отвлеченную систему уравнений, то да, можно указать некие условия так, чтобы она была разрешима. Я же ориентировался на исходную задачу о распределении единичных зарядов. В этой задаче есть соображения симметрии. И, кроме того, заряды обязательно должны быть одного знака. В системе "силовых" уравнений этого нет. Но отказ от таких неявных условий меняет задачу.

 Профиль  
                  
 
 Re: Распределение заряда на иголке.
Сообщение27.02.2015, 18:06 
Заслуженный участник


07/07/09
5408
sup в сообщении #983403 писал(а):
Ну тогда так. Три заряда. В сумме 3. На левом конце - 2.

А как это - два на левом конце?
Заряды же маленькие , как точки, чтобы их соединить, их надо очень сильно прижать, нет у нас такой силы.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 308 ]  На страницу Пред.  1 ... 5, 6, 7, 8, 9, 10, 11 ... 21  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group