[Holy moly,] здесь много перепутанных частей ответов. Вот способ начать разбираться с разными относящимися друг к другу физическими принципами.
0. Вопрос сейчас гласит: "Э.-М. и/или Паули?". Короткий ответ: ни то, ни другое, хотя верно, что именно электромагнетизм - это фигурирующая здесь сила (а не сильные или слабые ядерные силы, единственные иные кандидаты), и верно, что размер атомов задан принципами неопределённости и исключения [, as it were.]
1. Пренебрегите или уберите гравитацию из ситуации. Тогда вопрос на самом деле станет: "Почему твёрдые тела, скажем, на поверхности Земли (хотя это и не важно), - твёрдые, то есть, почему они сопротивляются деформации, в некоторой количественной степени?"
2. Мы можем идеализовать задачу. Почему монокристаллы сопротивляются деформации? Мы заменим камни и землю соприкасающимися микрокристаллами, удерживаемыми трением. Другими словами, почему кристаллы твёрдые? Почему мы не можем ходить по воде, пока она не замёрзнет?
3. Каковы масштабы энергий нашей задачи? Ну, типичная сила - это сила, необходимая, чтобы разрушить кристаллическую решётку. Это порядка тепловой энергии при плавлении,
. Так что, для воды (поскольку мне удобно мыслить в электронвольтах) - около 0,025 эВ/молекулу, для камня примерно в 10 раз больше. Это из-за того, что молекулы воды в кристалле льда связаны водородными связями с силой около 0,1 эВ, а атомы в кварце - ковалентными связями, около 1 эВ. Так что, да, именно электромагнетизм - это фигурирующая здесь сила.
Точнее, сила на подошве ботинка, то есть обычно около
(на площадь, соответствующую молекуле воды на поверхности кристалла) - и умножить на расстояние, на которое эта сила должна сдвинуть молекулу (может быть,
?), это будет
или (используя
) это будет
- эта энергия сравнивается с
о которых говорилось выше. Так что, сила со стороны ботинка, идущего по льду, даёт всего около
энергии, требующейся, чтобы расплавить или деформировать кристалл льда. Поэтому мы не проваливаемся через лёд.
4. Здесь мы получаем важный урок. В физике, говорить о "причинах" - это завуалированно говорить о расчётах и уравнениях, лежащих в основе вычисления величины явления. Так, Вайскопф (см. ниже) обсуждает те же самые уравнения с другими числами, в этот раз используя давление, которое создаётся в основании горы, и указыват, что оно на самом деле достигает масштаба энергий, достаточного, чтобы деформировать или расплаветь каменную породу (скажем, кварц), и таким образом вычисляет максимальную высоту гор на Земле (или на любой планете), используя всего лишь несколько фундаментальных констант. [This then carries over.] И это идёт ещё дальше. Для вычисления максимальной высоты гор на звёздах - белых карликах (вымышленных гор, я полагаю), или что более важно, на поверхности нейтронных звёзд (настоящих), используйте те же самые принципы, но теперь учитывайте принцип запрета, или другие силы, поскольку они начинают играть роль на соответствующих масштабах энергий.
В более привычных масштабах, и для проверки, если мы сосредоточим вес человека на намного меньшей площади, такой как лезвие конька, чтобы получить бо́льшую силу, то мы и в самом деле сможем деформировать кристаллы льда, что считается причиной низкого трения, которое мы испытываем, когда катаемся на коньках.
4. [Back to earth,] Вернёмся к земле и ботинкам. На этих энергиях, весьма малых по сравнению с любыми атомными масштабами энергий, не говоря уже о масштабах слабых или сильных взаимодействий, мы должны рассматривать атом просто как единое целое, а не как отдельные электроны и ядро. Учитывая квантовую механику, мы можем пренебречь всеми степенями свободы высших энергий, которые "вымораживаются" при низких (300 К) средних энергиях молекул. Вайскопф
хорошо излагает это в популярной книге "Knowledge and Wonder", см. главным образом главу 7 "О квантовой лестнице".
5. Нам осталась ещё одна более хорошо очерченная задача: почему жидкости замерзают и становятся твёрдой фазой, твёрдыми кристаллическими формами, и почему кристаллы вообще твёрдые? Перефразируя: почему небольшое снижение температуры ведёт к "вымораживанию" поступательных степеней свободы отдельных атомов и молекул, и одновременно даёт единую глобальную "трансляционную фазу"(?) (кристаллическую решётку) для положений всех молекул/атомов кристалла. Другими словами, почему, после фазового перехода, то есть изменения микроскопической симметрии материала, возникает твёрдость?
6. Это так же подразумевает и ответ на исходный вопрос. Чтобы деформация стала большой, молекулы должны вырваться из "глобальной фазы"(?), и покинуть своё положение в кристаллической решётке, а решётка сопротивляется этому изменению
коллективно, то есть, требуется нарушить состояние многих молекул, так что необходимая энергия велика, значительно больше энергии, доступной от крошечного давления, с которым вы давите на землю ботинком. Здесь есть что ещё добавить, но я остановлюсь на этом.
P. S. Все популярные книги Вайскопфа по физике восхитительны.