А мне вот неясно, что тут может быть неясным. Поэтому я всё ещё здесь. Давайте же помогать друг другу: я вам смысл, как смогу, а вы мне непонятки, не скрывая.
Например, какой смысл в координатах

?

- это собственное время, а

- не очень понятно и какие значение могут принимать данная координата? Угловые вроде как остались угловыми в смысле таком же как и в сферических координатах. Если

- абстракция, то все равно мы должны ее связать с какой-то наблюдаемой физической характеристикой. Это первое.
Второе. Все физические метрики получаются , когда решается система дифференциальных уравнений, часть из которых это уравнения Эйнштейна, а часть дополнительные координатные условия. Но это еще не все. Предполагается, что где-то в многообразии есть область, где есть источник гравитации , то есть вещество с определенными характеристиками - давлением и плотностью ( и скоростью). Поэтому решать надо уравнения не только в вакууме, но и внутри вещества. И совместно. По крайней мере все основные точные решения в ОТО именно так и получались. Пусть даже в качестве источника выступала точечная масса.
Наконец, не очень понятно, почему Вам не нравится данное решение Глинера? И чем Ваше предложенное лучше?
То, как получают новые решения теоретики - берут с потолка метрику, подставляют в уравнения гравитационного поля , затем крутят с преобразованиями координат, получают другое решение и распространяют его на область , где первоначальное решение невозможно - этот путь в корне порочен, хотя дает волю фантазиям.